Electron Phonon Coupling
Here we show step-by-step how to use Quantum Espresso to calculate phonons and electron-phonon matrix-elements on a regular q-grid, with the final aim to allow Yambo to read these databases and calculate the temperature-dependent correction to the electronic states.
Calculaiton will be devided in different folders:
* scf for the self-consistent calculation * nscf for the non-self-consistent calcaultion with a larger number of bands * phonons for the calculation of dynamical matrices on a given q-grid * dvscf for the calculation of electron-phonon matrix elements * pseudo the pseudo potential folder
Create a standard scf and nscf calculation in two different folders.
1. In scf we run a standard scf calculation choosing the k grid and setting force_symmorphic=.true. An ${PREFIX}.save folder will be automatically created.
2. In the main directory I copy the previously created ${PREFIX}.save directory and I run a dVscf calculation, meaning a phonon calculation setting the flag electron_phonon = ‘dvscf’, and a q grid equivalent to the k grid you used before, for example
&inputph
tr2_ph = 1e-16
prefix = '6HSiC'
fildvscf = '6HSiC-dvscf'
fildyn = '6HSiC.dyn'
electron_phonon = 'dvscf',
epsil = .true.
trans = .true.
ldisp = .true.
verbosity = 'high'
nq1=10, nq2 =10, nq3=2
/
3. In nscf folder I run an nscf calculation, setting the number of bands nbnd equal to the desired band number, force_symmorphic=.true. and the same q grid as before. A ${PREFIX}.save folder will be automatically created.
4. In the main directory I copy and then overwrite the previous ${PREFIX}.save directory with the new one. Now I run an elph calculation setting electron_phonon = ‘yambo’, and the q grid.
&inputph
fildvscf = '6HSiC-dvscf'
fildyn = '6HSiC.dyn'
verbosity = 'high'
epsil = .true.
ldisp = .true.
tr2_ph = 1e-16
prefix = '6HSiC'
electron_phonon = 'yambo',
trans = .false.
nq1=10, nq2 =10, nq3=2
/