Nonequilibrium absorption in bulk silicon

From The Yambo Project
Revision as of 13:27, 13 November 2024 by Davide (talk | contribs) (Creating a tutorial on nonequilibrium optical properties)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In this tutorial you will learn the basic concepts for computing changes in the optical properties of a semi-conductor in presence of a non-equilibrium electrons and holes distribution in conduction and valence band respectively. This tutorial is based on the results published in Phys. Rev. B[1]

Template:Font color

The material: Silicon

We will study nonequilibrium absorption in bulk silicon. The same material used for this [Silicon|GW tutorial] which is a prerequisite for the following .

  • FCC lattice
  • Two atoms per cell (8 electrons)
  • Lattice constant 10.183 [a.u.]
  • Plane waves cutoff 15 Rydberg
  • Direct gap 3.4 eV at Gamma
  • Indirect gap 1.1 eV between Gamma= (0 0 0) and a point X', close to X=(0 1 0)
Silicon Band Structure

Tutorial files and Tutorial structure

Follow the instructions in Tutorials#Files and download/unpack the Silicon.tar.gz.

Once the tutorial archive file is unzipped the following folder structure will appear

COPYING  README  Silicon/

with the Solid_Si folder containing

> ls Silicon/ 
PWSCF/  YAMBO/

In the Pwscf folder the student will find an input/output directory with input/output files for pw.x. The Silicon pseudopotential file is also provided.

> ls PWSCF/
convergence_scripts  input  output  psps

In the convergence_scripts you will find some useful shell scripts to run the ground state convergence runs for Silicon.

The YAMBO folder contains the Yambo input/output files and core databases.

> ls YAMBO/
2x2x2/  4x4x4/  6x6x6/  8x8x8/  Convergence_Plots_and_Scripts/  GAMMA/

The core databases are provided for several k-points grids. In addition the folder Convergence_Plots_and_Scripts contains some scripts used for the [Silicon|GW tutorial] . Here we will just use the 8x8x8 (which is still very far from convergence) folder for computing (nonequilibrium) optical properties.


References