Optics at the independent particle level

From The Yambo Project
Jump to navigation Jump to search

In this tutorial you will learn how to calculate optical spectra at the RPA or independent particle level for bulk hBN.

Yambo tutorial image

Prerequisites

  • You must first complete the "How to use Yambo" tutorial

You will need:

  • The SAVE databases for bulk hBN
  • The yambo executable
  • gnuplot, for plotting spectra

Choosing input parameters

Enter the folder for bulk hBN that contains the SAVE directory, and generate the input file. From yambo -H you should understand that the correct option is yambo -o c. Let's add some command line options:

$ cd YAMBO_TUTORIALS/hBN/YAMBO
$ yambo -o c -F yambo.in_IP -J Full

This corresponds to optical properties in G-space at the independent particle level (Chimod= "IP").

Optics runlevel

Let's calculate just for the long-wavelength limit q = 0. This always corresponds to the first q-point. Change the following variables in the input file to:

% QpntsRXd
 1 |  1 |                   # [Xd] Transferred momenta
%
ETStpsXd= 1001               # [Xd] Total Energy steps

in order to select just the first q. The last variable ensures we generate a smooth spectrum. Save the input file and launch the code, keeping the command line options as before (i.e., just remove the lower case options):

$ yambo -F yambo.in_IP -J Full
...
 <---> [05] Optics
<---> [LA] SERIAL linear algebra
<---> [DIP] Checking dipoles header
<---> [x,Vnl] computed using 4 projectors
<---> [M  0.017 Gb] Alloc WF ( 0.016)
<---> [WF] Performing Wave-Functions I/O from ./SAVE
<01s> Dipoles: P and iR (T): |########################################| [100%] 01s(E) 01s(X)
<01s> [M  0.001 Gb] Free WF ( 0.016)
<01s> [DIP] Writing dipoles header
<01s> [X-CG] R(p) Tot o/o(of R)  :   5501   52992     100
<01s> Xo@q[1] |########################################| [100%] --(E) --(X)
<01s> [06] Game Over & Game summary
$ ls
Full   SAVE  yambo.in_IP   r_setup
o-Full.eel_q1_ip  o-Full.eps_q1_ip  r-Full_optics_chi

Let's take a moment to understand what Yambo has done in side the Optics runlevel:

  1. Compute the [x,Vnl] term
  2. Read the wavefunctions from disc [WF]
  3. Compute the dipoles, i.e. matrix elements of p
  4. Write the dipoles to disk as SAVE/ndb.dip* databases. This you can see in the report file:
$ grep -A20 "WR" r-Full_optics_chi 
[WR./Full//ndb.dip_iR_and_P]
Brillouin Zone Q/K grids (IBZ/BZ):  14   72   14   72
RL vectors                   (WF): 1491
Electronic Temperature        [K]: 0.0000000
Bosonic    Temperature        [K]: 0.0000000
X band range           :   1  100
RL vectors in the sum  : 1491
[r,Vnl] included       :yes
...
  1. Finally, Yambo computes X0 for this q, and writes the dielectric function inside the o-Full.eps_q1_ip file for plotting

Cut off

Before plotting the output, let's change a few more variables. The previous calculation used all the G-vectors in expanding the wavefunctions, 1491. This corresponds roughly to the cut off energy of 40Ry we used in the DFT calculation. Generally, however, we can use a smaller value. We use the verbosity to switch on this variable, and a new -J flag to avoid reading the previous database:

$ yambo -o c -F yambo.in_IP -J 6Ry -V RL

Change the value of FFTGvecs and its unit:

FFTGvecs= 6           Ry    # [FFT] Plane-waves

Save the input file and launch the code again, and then plot the o-Full.eps_q1_ip and o-6Ry.eps_q1_ip files:

$ gnuplot
gnuplot> plot "o-Full.eps_q1_ip" w l,"o-6Ry.eps_q1_ip" w p

Yambo tutorial image

Clearly there is very little difference between the two spectra.

q-direction

Last, let's select a different component of the dielectric tensor:

$ yambo -o c -F yambo.in_IP -J 6Ry -V RL
...
% LongDrXd
0.000000 | 0.000000 | 1.000000 |        # [Xd] [cc] Electric Field
%
...
$ yambo -F yambo.in_IP -J 6Ry -V RL

This time yambo reads from the 6Ry folder, so it does not need to compute the dipoles again. Plotting gives:

$ gnuplot
gnuplot> plot "o-6Ry.eps_q1_ip" t "q || x-axis" w l,"o-6Ry.eps_q1_ip_01" t "q || c-axis" w l

Yambo tutorial image

Non-local commutator

Links