Generating the Yambo databases: Difference between revisions
mNo edit summary |
|||
Line 5: | Line 5: | ||
== Prerequisites == | == Prerequisites == | ||
[[File:HBN-bulk-3x3-annotated.png|thumb|Atomic structure of bulk hBN]] | [[File:HBN-bulk-3x3-annotated.png|thumb|Atomic structure of bulk hBN]] | ||
[[File:HBN2.png|thumb|Atomic structure of 2D hBN]] | |||
'''Material properties''': | '''Material properties''': |
Revision as of 20:28, 16 March 2017
UNDER CONSTRUCTION (CH)
UNPACK IN SAME PLACE
In this tutorial we will give a step-by-step demonstration how to generate the Yambo databases starting from a PWscf calculation.
Prerequisites
Material properties:
- HCP lattice, ABAB stacking
- Four atoms per cell, B and N (16 electrons, )
- Lattice constants: a = 4.716 [a.u.], c/a = 2.582
- Plane wave cutoff 40 Ry (1500 RL vectors in wavefunctions)
You will need:
- PWSCF input files and pseudopotentials for hBN bulk (Download here)
pw.x
executable, version 5.0 or laterp2y
executable
Unpack the TARFILE:
$ tar -xcvf hBN-bulk.tar $ cd hBN/PWSCF $ ls hbn_bands.in hbn_nscf.in hbn_scf.in hbn_scf_b.in REFERENCES
DFT calculations
First run the SCF calculation in the usual manner, e.g.
pw.x < hBN_scf.in > hBN_scf.out
and then the non-SCF calculation to generate a set of Kohn-Sham eigenvalues and eigenvectors across a denser k-point mesh and for occupied and unoccupied states:
pw.x < hBN_nscf.in > hBN_nscf.out
Note the presence of the following flags in the input file:
wf_collect=.true. force_symmorphic=.true.
which are needed for the next step. Full explanations of these variables are given on the quantum-ESPRESSO input variables page. After these two runs, you should have a hBN.save
directory:
$ ls hBN.save data-file.xml
Conversion to Yambo format
PWscf output is converted to the Yambo format using the p2y
(pwscf to yambo), found in the yambo bin
directory.
Enter the hbn.save
directory and launch p2y
:
$ cd hBN.save $ p2y [output]
The code reports some information about the system and generates a SAVE
directory:
$ ls SAVE HB,in etc $ ls SAVE ns.db1 ns.wf ns.kb_pp_pwscf ns.wf_fragments_1_1 ... ns.kb_pp_pwscf_fragment_1 ...
Finally, let's move the SAVE directory into a new clean folder:
mv SAVE ../YAMBO/
Advanced users
p2y
accepts several command line options:
$ p2y -H
dfadsfas
Next tutorial: Introduction to yambo: input, output and command line interface