Variables: Difference between revisions
No edit summary |
No edit summary |
||
Line 25: | Line 25: | ||
===All Variables (alphabetical order)=== | ===All Variables (alphabetical order)=== | ||
<code>[[Variables#BDmRange|BDmRange]]</code> <code>[[Variables#BEnRange|BEnRange]]</code> <code>[[Variables#BEnSteps|BEnSteps]]</code> <code>[[Variables#BLongDir|BLongDir]]</code> <code>[[Variables#BndsRnXd|BndsRnXd]]</code> <code>[[Variables#BndsRnXp|BndsRnXp]]</code> <code>[[Variables#BoseCut|BoseCut]]</code> <code>[[Variables#BoseTemp|BoseTemp]]</code> <br> | <code>[[Variables#BDmRange|BDmRange]]</code> <code>[[Variables#BEnRange|BEnRange]]</code> <code>[[Variables#BEnSteps|BEnSteps]]</code> <code>[[Variables#BLongDir|BLongDir]]</code> <code>[[Variables#BndsRnXd|BndsRnXd]]</code> <code>[[Variables#BndsRnXp|BndsRnXp]]</code> <code>[[Variables#BoseCut|BoseCut]]</code> <code>[[Variables#BoseTemp|BoseTemp]]</code> <br> | ||
<code>[[Variables#BS_CPU|BS_CPU]]</code> <code>[[Variables#BS_nCPU_LinAlg_DIAGO|BS_nCPU_LinAlg_DIAGO]]</code> <code>[[Variables#BS_nCPU_LinAlg_INV|BS_nCPU_LinAlg_INV]]</code> <code>[[Variables#BS_ROLEs|BS_ROLEs]]</code> <code>[[Variables#bse|bse]]</code> <code>[[Variables#BSEBands|BSEBands]]</code> <code>[[Variables# | <code>[[Variables#BS_CPU|BS_CPU]]</code> <code>[[Variables#BS_nCPU_LinAlg_DIAGO|BS_nCPU_LinAlg_DIAGO]]</code> <code>[[Variables#BS_nCPU_LinAlg_INV|BS_nCPU_LinAlg_INV]]</code> <code>[[Variables#BS_ROLEs|BS_ROLEs]]</code> <code>[[Variables#bse|bse]]</code> <code>[[Variables#BSEBands|BSEBands]]</code> <code>[[Variables#BSEmod|BSEmod]]</code> <code>[[Variables#BSENGBlk|BSENGBlk]]</code> <br> | ||
<code>[[Variables#BSENGexx|BSENGexx]]</code> <code>[[Variables#BSEPSInvTrs|BSEPSInvTrs]]</code> <code>[[Variables#BSHayTrs|BSHayTrs]]</code> <code>[[Variables#bsk|bsk]]</code> <code>[[Variables#BSKmod|BSKmod]]</code> <code>[[Variables#BSSInvMode|BSSInvMode]]</code> <code>[[Variables#BSSInvPFratio|BSSInvPFratio]]</code> <code>[[Variables#BSSmod|BSSmod]]</code> <br> | |||
<code>[[Variables#BSSmod|BSSmod]]</code> <code>[[Variables#CGrdSpXd|CGrdSpXd]]</code> <code>[[Variables#chi|chi]]</code> <code>[[Variables#ChiLinAlgMod|ChiLinAlgMod]]</code> <code>[[Variables#Chimod|Chimod]]</code> <code>[[Variables#cohsex|cohsex]]</code> <code>[[Variables#CUTBox|CUTBox]]</code> <code>[[Variables#CUTCol_test|CUTCol_test]]</code> < | <code>[[Variables#CGrdSpXd|CGrdSpXd]]</code> <code>[[Variables#chi|chi]]</code> <code>[[Variables#ChiLinAlgMod|ChiLinAlgMod]]</code> <code>[[Variables#Chimod|Chimod]]</code> <code>[[Variables#cohsex|cohsex]]</code> <code>[[Variables#CUTBox|CUTBox]]</code> <code>[[Variables#CUTCol_test|CUTCol_test]]</code> <code>[[Variables#CUTCylLen|CUTCylLen]]</code> <br> | ||
<code>[[Variables#CUTGeo|CUTGeo]]</code> <code>[[Variables#CUTRadius|CUTRadius]]</code> <code>[[Variables#CUTwsGvec|CUTwsGvec]]</code> <code>[[Variables#DbGdQsize|DbGdQsize]]</code> <code>[[Variables#DbGdQsize|DbGdQsize]]</code> <code>[[Variables#DBsFRAGpm|DBsFRAGpm]]</code> <code>[[Variables#DBsIOoff|DBsIOoff]]</code> <code>[[Variables#DIP_Threads|DIP_Threads]]</code> <br> | |||
<code>[[Variables#DIP_Threads|DIP_Threads]]</code> <code>[[Variables#DipApproach|DipApproach]]</code> <code>[[Variables#DipApproach|DipApproach]]</code> <code>[[Variables#DipPDirect|DipPDirect]]</code> <code>[[Variables#DipPDirect|DipPDirect]]</code> <code>[[Variables#DmERefXd|DmERefXd]]</code> <code>[[Variables#DmRngeXd|DmRngeXd]]</code> <code>[[Variables#DmRngeXp|DmRngeXp]]</code> | <code>[[Variables#DipApproach|DipApproach]]</code> <code>[[Variables#DipApproach|DipApproach]]</code> <code>[[Variables#DipPDirect|DipPDirect]]</code> <code>[[Variables#DipPDirect|DipPDirect]]</code> <code>[[Variables#DmERefXd|DmERefXd]]</code> <code>[[Variables#DmRngeXd|DmRngeXd]]</code> <code>[[Variables#DmRngeXp|DmRngeXp]]</code> <code>[[Variables#DrClassic|DrClassic]]</code> <br> | ||
<code>[[Variables#DrClassic|DrClassic]]</code> <code>[[Variables#DrudeWBS|DrudeWBS]]</code> <code>[[Variables#DrudeWXd|DrudeWXd]]</code> <code>[[Variables#dScStep|dScStep]]</code> <code>[[Variables#DysSolver|DysSolver]]</code> <code>[[Variables#EhEngyXd|EhEngyXd]]</code> <code>[[Variables#ElecTemp|ElecTemp]]</code> <code>[[Variables#Em1Anys|Em1Anys]]</code> | <code>[[Variables#DrudeWBS|DrudeWBS]]</code> <code>[[Variables#DrudeWXd|DrudeWXd]]</code> <code>[[Variables#dScStep|dScStep]]</code> <code>[[Variables#DysSolver|DysSolver]]</code> <code>[[Variables#EhEngyXd|EhEngyXd]]</code> <code>[[Variables#ElecTemp|ElecTemp]]</code> <code>[[Variables#Em1Anys|Em1Anys]]</code> <code>[[Variables#em1d|em1d]]</code> <br> | ||
<code>[[Variables#em1d|em1d]]</code> <code>[[Variables#em1s|em1s]]</code> <code>[[Variables#EMStpsXd|EMStpsXd]]</code> <code>[[Variables#EnRngeXd|EnRngeXd]]</code> <code>[[Variables#EnRngeXp|EnRngeXp]]</code> <code>[[Variables#ETStpsXd|ETStpsXd]]</code> <code>[[Variables#ETStpsXp|ETStpsXp]]</code> <code>[[Variables# | <code>[[Variables#em1s|em1s]]</code> <code>[[Variables#EMStpsXd|EMStpsXd]]</code> <code>[[Variables#EnRngeXd|EnRngeXd]]</code> <code>[[Variables#EnRngeXp|EnRngeXp]]</code> <code>[[Variables#ETStpsXd|ETStpsXd]]</code> <code>[[Variables#ETStpsXp|ETStpsXp]]</code> <code>[[Variables#EvalCurrent|EvalCurrent]]</code> <code>[[Variables#ExtendOut |ExtendOut ]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#ExtF_Dir|ExtF_Dir]]</code> <code>[[Variables#ExtF_kind|ExtF_kind]]</code> <code>[[Variables#EXXRLvcs|EXXRLvcs]]</code> <code>[[Variables#EXXRLvcs|EXXRLvcs]]</code> <code>[[Variables#FFTGvecs|FFTGvecs]]</code> <code>[[Variables#FxcGRLc|FxcGRLc]]</code> <code>[[Variables#Gauge|Gauge]]</code> <code>[[Variables#GbndRnge|GbndRnge]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#GDamping|GDamping]]</code> <code>[[Variables#GDmRnge|GDmRnge]]</code> <code>[[Variables#GEnRnge|GEnRnge]]</code> <code>[[Variables#GEnSteps|GEnSteps]]</code> <code>[[Variables#GfnQP_E|GfnQP_E]]</code> <code>[[Variables#GfnQP_N|GfnQP_N]]</code> <code>[[Variables#GfnQP_Wc|GfnQP_Wc]]</code> <code>[[Variables#GfnQP_Wc_dos|GfnQP_Wc_dos]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#GfnQP_Wc_E|GfnQP_Wc_E]]</code> <code>[[Variables#GfnQP_Wv|GfnQP_Wv]]</code> <code>[[Variables#GfnQP_Wv_dos|GfnQP_Wv_dos]]</code> <code>[[Variables#GfnQP_Wv_E|GfnQP_Wv_E]]</code> <code>[[Variables#GfnQP_Z|GfnQP_Z]]</code> <code>[[Variables#GfnQPdb|GfnQPdb]]</code> <code>[[Variables#GrFnTpXd|GrFnTpXd]]</code> <code>[[Variables#GTermEn|GTermEn]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#GTermKind|GTermKind]]</code> <code>[[Variables#gw0|gw0]]</code> <code>[[Variables#HARRLvcs|HARRLvcs]]</code> <code>[[Variables#HF_and_locXC|HF_and_locXC]]</code> <code>[[Variables#IDEm1Ref|IDEm1Ref]]</code> <code>[[Variables#IkSigLim|IkSigLim]]</code> <code>[[Variables#IkXLim|IkXLim]]</code> <code>[[Variables#K_Threads|K_Threads]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#KfnQP_E|KfnQP_E]]</code> <code>[[Variables#KfnQP_N|KfnQP_N]]</code> <code>[[Variables#KfnQP_Wc|KfnQP_Wc]]</code> <code>[[Variables#KfnQP_Wc_dos|KfnQP_Wc_dos]]</code> <code>[[Variables#KfnQP_Wc_E|KfnQP_Wc_E]]</code> <code>[[Variables#KfnQP_Wv|KfnQP_Wv]]</code> <code>[[Variables#KfnQP_Wv_dos|KfnQP_Wv_dos]]</code> <code>[[Variables#KfnQP_Wv_E|KfnQP_Wv_E]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#KfnQP_Z|KfnQP_Z]]</code> <code>[[Variables#KfnQPdb|KfnQPdb]]</code> <code>[[Variables#LifeTrCG|LifeTrCG]]</code> <code>[[Variables#LongDrXd|LongDrXd]]</code> <code>[[Variables#LongDrXp|LongDrXp]]</code> <code>[[Variables#LRC_alpha|LRC_alpha]]</code> <code>[[Variables#MaxGvecs|MaxGvecs]]</code> <code>[[Variables#MEM_tresh|MEM_tresh]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#MetDamp|MetDamp]]</code> <code>[[Variables#Nelectro|Nelectro]]</code> <code>[[Variables#NewtDchk|NewtDchk]]</code> <code>[[Variables#NGsBlkXd|NGsBlkXd]]</code> <code>[[Variables#NLBands|NLBands]]</code> <code>[[Variables#NLCorrelation |NLCorrelation ]]</code> <code>[[Variables#NLDamping|NLDamping]]</code> <code>[[Variables#NLintegrator|NLintegrator]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#NLogCPUs|NLogCPUs]]</code> <code>[[Variables#nloptics|nloptics]]</code> <code>[[Variables#NLstep|NLstep]]</code> <code>[[Variables#NLtime|NLtime]]</code> <code>[[Variables#NLverbosity|NLverbosity]]</code> <code>[[Variables#NoCondSumRule|NoCondSumRule]]</code> <code>[[Variables#NonPDirs|NonPDirs]]</code> <code>[[Variables#OccTresh|OccTresh]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#OnMassShell |OnMassShell ]]</code> <code>[[Variables#optics|optics]]</code> <code>[[Variables#PAR_def_mode|PAR_def_mode]]</code> <code>[[Variables#PAR_def_mode|PAR_def_mode]]</code> <code>[[Variables#PPAPntXp|PPAPntXp]]</code> <code>[[Variables#Qdirection|Qdirection]]</code> <code>[[Variables#QPerange|QPerange]]</code> <code>[[Variables#QPerange|QPerange]]</code> <br> | ||
<code>[[Variables# | <code>[[Variables#QpgFull|QpgFull]]</code> <code>[[Variables#QPkrange|QPkrange]]</code> <code>[[Variables#QPkrange|QPkrange]]</code> <code>[[Variables#QpntsRXd|QpntsRXd]]</code> <code>[[Variables#QptCoord|QptCoord]]</code> <code>[[Variables#QShiftOrder|QShiftOrder]]</code> <code>[[Variables#RandGvec|RandGvec]]</code> <code>[[Variables#RandQpts|RandQpts]]</code> <br> | ||
<code>[[Variables#Reflectivity|Reflectivity]]</code> <code>[[Variables#rim_cut|rim_cut]]</code> <code>[[Variables#SE_CPU|SE_CPU]]</code> <code>[[Variables#SE_ROLEs|SE_ROLEs]]</code> <code>[[Variables#SE_Threads|SE_Threads]]</code> <code>[[Variables#setup|setup]]</code> <code>[[Variables#ShiftedPaths|ShiftedPaths]]</code> <code>[[Variables#ShiftedPaths|ShiftedPaths]]</code> <br> | |||
<code>[[Variables#StdoHash|StdoHash]]</code> <code>[[Variables#UseNLCC|UseNLCC]]</code> <code>[[Variables#VXCRLvcs|VXCRLvcs]]</code> <code>[[Variables#WehCpl|WehCpl]]</code> <code>[[Variables#WFbuffIO|WFbuffIO]]</code> <code>[[Variables#X_all_q_CPU|X_all_q_CPU]]</code> <code>[[Variables#X_all_q_nCPU_LinAlg_INV|X_all_q_nCPU_LinAlg_INV]]</code> <code>[[Variables#X_all_q_ROLEs|X_all_q_ROLEs]]</code> <br> | |||
<code>[[Variables#X_finite_q_CPU|X_finite_q_CPU]]</code> <code>[[Variables#X_finite_q_nCPU_LinAlg_INV|X_finite_q_nCPU_LinAlg_INV]]</code> <code>[[Variables#X_finite_q_ROLEs|X_finite_q_ROLEs]]</code> <code>[[Variables#X_q_0_CPU|X_q_0_CPU]]</code> <code>[[Variables#X_q_0_nCPU_LinAlg_INV|X_q_0_nCPU_LinAlg_INV]]</code> <code>[[Variables#X_q_0_ROLEs|X_q_0_ROLEs]]</code> <code>[[Variables#X_Threads|X_Threads]]</code> <code>[[Variables#XfnQP_E|XfnQP_E]]</code> <br> | <code>[[Variables#X_finite_q_CPU|X_finite_q_CPU]]</code> <code>[[Variables#X_finite_q_nCPU_LinAlg_INV|X_finite_q_nCPU_LinAlg_INV]]</code> <code>[[Variables#X_finite_q_ROLEs|X_finite_q_ROLEs]]</code> <code>[[Variables#X_q_0_CPU|X_q_0_CPU]]</code> <code>[[Variables#X_q_0_nCPU_LinAlg_INV|X_q_0_nCPU_LinAlg_INV]]</code> <code>[[Variables#X_q_0_ROLEs|X_q_0_ROLEs]]</code> <code>[[Variables#X_Threads|X_Threads]]</code> <code>[[Variables#XfnQP_E|XfnQP_E]]</code> <br> | ||
<code>[[Variables#XfnQP_N|XfnQP_N]]</code> <code>[[Variables#XfnQP_Wc|XfnQP_Wc]]</code> <code>[[Variables#XfnQP_Wc_dos|XfnQP_Wc_dos]]</code> <code>[[Variables#XfnQP_Wc_E|XfnQP_Wc_E]]</code> <code>[[Variables#XfnQP_Wv|XfnQP_Wv]]</code> <code>[[Variables#XfnQP_Wv_dos|XfnQP_Wv_dos]]</code> <code>[[Variables#XfnQP_Wv_E|XfnQP_Wv_E]]</code> <code>[[Variables#XfnQP_Z|XfnQP_Z]]</code> <br> | <code>[[Variables#XfnQP_N|XfnQP_N]]</code> <code>[[Variables#XfnQP_Wc|XfnQP_Wc]]</code> <code>[[Variables#XfnQP_Wc_dos|XfnQP_Wc_dos]]</code> <code>[[Variables#XfnQP_Wc_E|XfnQP_Wc_E]]</code> <code>[[Variables#XfnQP_Wv|XfnQP_Wv]]</code> <code>[[Variables#XfnQP_Wv_dos|XfnQP_Wv_dos]]</code> <code>[[Variables#XfnQP_Wv_E|XfnQP_Wv_E]]</code> <code>[[Variables#XfnQP_Z|XfnQP_Z]]</code> <br> | ||
Line 48: | Line 50: | ||
===Global options=== | ===Global options=== | ||
<span id=Nelectro></span> | <span id=Nelectro></span> | ||
{{var-basic|Nelectro||}}{{var-default|From ns.db1}}{{var-verbosity|gen}} | {{var-basic|Nelectro|None|}}{{var-default|From ns.db1}}{{var-verbosity|gen}} | ||
{{var-short|Electrons number}} | {{var-short|Electrons number}} | ||
{{var-usage|}} | {{var-usage|}} | ||
Line 64: | Line 66: | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=StdoHash></span> | <span id=StdoHash></span> | ||
{{var-basic|StdoHash||Integer}}{{var-default|40}}{{var-verbosity|io}} | {{var-basic|StdoHash|None|Integer}}{{var-default|40}}{{var-verbosity|io}} | ||
{{var-short|Number of hashes in live-timing output}} | {{var-short|Number of hashes in live-timing output.}} | ||
{{var-usage|}} | {{var-usage|Might be useful to increase for very long jobs, or if the code is hanging.}} | ||
<span id=DBsIOoff></span> | <span id=DBsIOoff></span> | ||
{{var-basic|DBsIOoff||String}}{{var-verbosity|io}} | {{var-basic|DBsIOoff|None|String}}{{var-default|None}}{{var-verbosity|io}} | ||
{{var-short|List of databases not written to disk}} | {{var-short|List of databases not written to disk}} | ||
{{var-usage|Space-separated list of DB with NO I/O. DB is (DIP,X,HF,COLLs,J,GF,CARRIERs,OBS,W,SC,BS,ALL)}} | {{var-usage|Space-separated list of DB with NO I/O. DB is (DIP,X,HF,COLLs,J,GF,CARRIERs,OBS,W,SC,BS,ALL). No ndb.* file is written. }} | ||
::Example: DBsIOoff= "DIP" means ndb.dip_iR_and_P_fragment_* is not written, but stored in memory if Yambo needs it. | |||
<span id=DBsFRAGpm></span> | <span id=DBsFRAGpm></span> | ||
{{var-basic|DBsFRAGpm||String}}{{var-verbosity|io}} | {{var-basic|DBsFRAGpm|None|String}}{{var-default|None}}{{var-verbosity|io}} | ||
{{var-short|List of databases to be fragmented}} | {{var-short|List of databases to be fragmented}} | ||
{{var-usage|Space-separated list of +DB to FRAG and -DB to NOT FRAG, where DB is (DIP,X,W,HF,COLLS,K,BS,QINDX,RT,ELP}} | {{var-usage|Space-separated list of +DB to FRAG and -DB to NOT FRAG, where DB is (DIP,X,W,HF,COLLS,K,BS,QINDX,RT,ELP. Fragments the database. Smaller files (e.g. ndb.em1s_fragment_*) are created instead of a large one (e.g. ndb.em1s). Faster read/write operations in parallel runs}} | ||
<span id=WFbuffIO></span> | <span id=WFbuffIO></span> | ||
{{var-basic|WFbuffIO||}}{{var-verbosity|io}} | {{var-basic|WFbuffIO|None|Flag}}{{var-default|Off}}{{var-verbosity|io}} | ||
{{var-short|}} | {{var-short|Wave-functions buffered I/O}} | ||
{{var-usage|}} | {{var-usage|Parts of the WFs are stored by the node. Nodes communicate when these elements are needed. Memory heavy.}} | ||
<span id=MEM_tresh></span> | <span id=MEM_tresh></span> | ||
{{var-basic|MEM_tresh||}}{{var-verbosity|gen}} | {{var-basic|MEM_tresh|None|}}{{var-verbosity|gen}} | ||
{{var-short|Threshold on traced memory allocations/deallocations}} | {{var-short|Threshold on traced memory allocations/deallocations}} | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=NLogCPUs></span> | <span id=NLogCPUs></span> | ||
{{var-basic|NLogCPUs||}}{{var-verbosity|par}} | {{var-basic|NLogCPUs|None|}}{{var-verbosity|par}} | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=PAR_def_mode></span> | <span id=PAR_def_mode></span> | ||
{{var-basic|PAR_def_mode||}}{{var-verbosity|par}} | {{var-basic|PAR_def_mode|None|}}{{var-verbosity|par}} | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | {{var-usage|}} | ||
Line 94: | Line 97: | ||
{{var-basic|FFTGvecs|RL/Energy|Integer/Real}}{{var-verbosity|RL}} | {{var-basic|FFTGvecs|RL/Energy|Integer/Real}}{{var-verbosity|RL}} | ||
{{var-short|Number of G-vectors or energy cut off for expanding the wavefunctions/FFT transforms}} | {{var-short|Number of G-vectors or energy cut off for expanding the wavefunctions/FFT transforms}} | ||
{{var-usage|It needs careful convergence | {{var-usage|Determines size (memory) of calculation. Corresponds to cutoff in DFT calculation; can be much less than geometry cutoff. It needs careful convergence. }} | ||
===Initialization=== | ===Initialization=== | ||
<span id=setup></span> | <span id=setup></span> | ||
Line 116: | Line 119: | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | {{var-usage|}} | ||
===Random integration method and cutoff=== | ===Random integration method and cutoff Coulomb potentials=== | ||
<span id=rim_cut></span> | <span id=rim_cut></span> | ||
{{var-basic|rim_cut||String}} | {{var-basic|rim_cut||String}} | ||
Line 123: | Line 126: | ||
<span id=RandQpts></span> | <span id=RandQpts></span> | ||
{{var-basic|RandQpts|RL|Integer}} | {{var-basic|RandQpts|RL|Integer}} | ||
{{var-short|Number of random q-points in the BZ}} | {{var-short|Number of random q-points in the BZ to perform Monte Carlo Integration,}} | ||
{{var-usage|It needs convergence: values like 10^6 can be used to ensure convergence.}} ''See also:'' <code>[[Variables#RandGvec|RandGvec]]</code> | {{var-usage|It needs convergence: values like 10^6 can be used to ensure convergence. Needed for non 3D system to avoid divergences for small q, and needed to build cutoff potential with box shape}} ''See also:'' <code>[[Variables#RandGvec|RandGvec]]</code> | ||
<span id=CUTGeo></span> | <span id=CUTGeo></span> | ||
{{var-basic|CUTGeo|None|String}} | {{var-basic|CUTGeo|None|String}} | ||
{{var-short|Cutoff geometry}} | {{var-short|Cutoff geometry}} | ||
{{var-usage|Allowed values are: "box/cylinder/sphere X/Y/Z/XY...", e.g. "box xy" or "cylinder y".}} | {{var-usage|Allowed values are: "box/cylinder/sphere/ws X/Y/Z/XY...", e.g. "box xy" or "cylinder y". WS is the suggested option for orthorhombic cells. Use sphere (0D) for molecules, cylinder (1D) for polymers and nanotubes, box (0D, 1D, 2D) for all geometries. XYZ: cut in all directions. Box: XY: cut in XY only. Cylinder X/Y/Z indicates cylinder axis. When using Box shapes, the RIM is also needed to calculate the potential. In Box for large enough boxes assigns Box side slighlty smaller than the cell box}} ''See also:'' <code>[[Variables#CUTBox/CUTRadius/CUTCylLen/CUTwsGvec|CUTBox/CUTRadius/CUTCylLen/CUTwsGvec]]</code> | ||
<span id=CUTBox></span> | <span id=CUTBox></span> | ||
{{var-basic|CUTBox|Length|Vector}} | {{var-basic|CUTBox|Length|Vector}} | ||
{{var-short|Dimensions of box}} | {{var-short|Dimensions of box}} | ||
{{var-usage|}} | {{var-usage|Box side=0 means do not cut in that direction.}} | ||
<span id=CUTRadius></span> | <span id=CUTRadius></span> | ||
{{var-basic|CUTRadius|Length|Real}} | {{var-basic|CUTRadius|Length|Real}} | ||
Line 138: | Line 141: | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=CUTCylLen></span> | <span id=CUTCylLen></span> | ||
{{var-basic|CUTCylLen||}} | {{var-basic|CUTCylLen|Length|Real}} | ||
{{var-short|}} | {{var-short|Length for finite Cylinders}} | ||
{{var-usage|}} | {{var-usage|CUTCylLen=0 indicates infinite cylinder}} | ||
<span id=CUTwsGvec></span> | <span id=CUTwsGvec></span> | ||
{{var-basic|CUTwsGvec||}} | {{var-basic|CUTwsGvec|Energy|Real}} | ||
{{var-short|}} | {{var-short|Energy cut off on modified component }} | ||
{{var-usage|}} | {{var-usage|To be used together with CUTGeo="ws".Determines the number of components of the potential to be modified. }} ''See also:'' <code>[[Variables#CUTGeo|CUTGeo]]</code> | ||
<span id=RandGvec></span> | <span id=RandGvec></span> | ||
{{var-basic|RandGvec||}}{{var-verbosity|RL}} | {{var-basic|RandGvec|Energy|}}{{var-verbosity|RL}} | ||
{{var-short|}} | {{var-short|Number of G vectors the RIM is calculated at}} | ||
{{var-usage|}} | {{var-usage|RandGvec=1 (gamma) is usually enough}} | ||
<span id=QpgFull></span> | <span id=QpgFull></span> | ||
{{var-basic|QpgFull||}}{{var-verbosity|RL}} | {{var-basic|QpgFull||}}{{var-verbosity|RL}} | ||
Line 162: | Line 165: | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=CUTCol_test></span> | <span id=CUTCol_test></span> | ||
{{var-basic|CUTCol_test|| | {{var-basic|CUTCol_test|None|Flag}} | ||
{{var-short|}} | {{var-short|Provides in oututput the truncated Coulomb potential in real space}} | ||
{{var-usage|}} | {{var-usage|Useful option for debugging purpose}} | ||
===Hartree-Fock Self-energy and Vxc=== | ===Hartree-Fock Self-energy and Vxc=== | ||
<span id=HF_and_locXC></span> | <span id=HF_and_locXC></span> | ||
{{var-basic|HF_and_locXC||String}} | {{var-basic|HF_and_locXC||String}} | ||
{{var-short|Runlevel name}} | {{var-short|Runlevel name}} | ||
{{var-usage|}} | {{var-usage|Activate with -x}} | ||
<span id=EXXRLvcs></span> | <span id=EXXRLvcs></span> | ||
{{var-basic|EXXRLvcs|RL/Energy|Integer/Real}} | {{var-basic|EXXRLvcs|RL/Energy|Integer/Real}} | ||
{{var-short|Number of G-vectors used in the sum of the exchange self-energy Sx.}} | {{var-short|Number of G-vectors used in the sum of the exchange self-energy Sx.}} | ||
{{var-usage|It needs careful convergence | {{var-usage|It needs careful convergence. As it is not particularly time consuming, large values can be used to ensure convergence. Generally a large number is needed as the QP energies show a slow convergence. The calcualtion of the exchange part is rather fast.}} | ||
<span id=VXCRLvcs></span> | <span id=VXCRLvcs></span> | ||
{{var-basic|VXCRLvcs||}} | {{var-basic|VXCRLvcs||}} | ||
Line 179: | Line 182: | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=QPkrange></span> | <span id=QPkrange></span> | ||
{{var-basic|QPkrange||}} | {{var-basic|QPkrange|None|Range}} | ||
{{var-short|}} | {{var-short|Range of states (nk) where GW/Sx elements are calculated}} | ||
{{var-usage|}} | {{var-usage|Careful use of fewer k-points and bands reduces the calculation time; yambo will interpolate the rest. Format is: first k-point | last k-point | lower band | upper band. This can be split over several lines for multiple groups - see the Format page for examples.}} ''See also:'' <code>[[Variables#QPerange|QPerange]]</code> | ||
<span id=UseNLCC></span> | <span id=UseNLCC></span> | ||
{{var-basic|UseNLCC||}}{{var-verbosity|qp}} | {{var-basic|UseNLCC||}}{{var-verbosity|qp}} | ||
Line 187: | Line 190: | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=QPerange></span> | <span id=QPerange></span> | ||
{{var-basic|QPerange||}}{{var-verbosity|qp}} | {{var-basic|QPerange|None/Energy|Range}}{{var-verbosity|qp}} | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | {{var-usage|Careful use of fewer k-points and bands reduces the calculation time; yambo will interpolate the rest. Format is: first k-point | last k-point | lower energy | upper energy. This can be split over several lines for multiple groups.}} ''See also:'' <code>[[Variables#QPkrange|QPkrange]]</code> | ||
<span id=SE_CPU></span> | <span id=SE_CPU></span> | ||
{{var-basic|SE_CPU||}}{{var-verbosity|par}} | {{var-basic|SE_CPU|None|String}}{{var-verbosity|par}} | ||
{{var-short|}} | {{var-short|CPUs for each role}} | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=SE_ROLEs></span> | <span id=SE_ROLEs></span> | ||
{{var-basic|SE_ROLEs||}}{{var-verbosity|par}} | {{var-basic|SE_ROLEs|None|String}}{{var-verbosity|par}} | ||
{{var-short|}} | {{var-short|CPUs roles (q,qp,b)}} | ||
{{var-usage|}} | {{var-usage|Here qp=quasiparticle states, q=transferred momenta, b=bands in G summation. MPI-b best memory distribution. MPI-qp no communication. MPI-q leads to load unbalance.}} | ||
<span id=SE_Threads></span> | <span id=SE_Threads></span> | ||
{{var-basic|SE_Threads||}}{{var-verbosity|par}} | {{var-basic|SE_Threads|None|Integer}}{{var-verbosity|par}} | ||
{{var-short|}} | {{var-short|Number of threads for self-energy}} | ||
{{var-usage|}} | {{var-usage|Very efficient.}} | ||
===GW=== | ===GW=== | ||
<span id=cohsex></span> | <span id=cohsex></span> | ||
Line 213: | Line 216: | ||
<span id=QPkrange></span> | <span id=QPkrange></span> | ||
{{var-basic|QPkrange|None|Range}} | {{var-basic|QPkrange|None|Range}} | ||
{{var-short| | {{var-short|K-points and band range where you want to calculate the GW correction.}} | ||
{{var-usage|If interested in non consecutive kpoints or bands multiple rows can be also considered}} | {{var-usage|If interested in non consecutive kpoints or bands multiple rows can be also considered. The syntax is first kpoint | last kpoint | first band | last band}} | ||
<span id=GbndRnge></span> | <span id=GbndRnge></span> | ||
{{var-basic|GbndRnge|None|Range}} | {{var-basic|GbndRnge|None|Range}} | ||
{{var-short| | {{var-short|Specifies the range of bands entering in the sum over states in the correlation part of the self energy}} | ||
{{var-usage|It needs several empty states. Single quasiparticle states converges very slowly with respect GbndRnge, energy differences (e.g. gaps) behave better. See also GTermKind variable in order to speed up the convergences.}} | {{var-usage|It needs several empty states. Single quasiparticle states converges very slowly with respect GbndRnge, energy differences (e.g. gaps) behave better. See also GTermKind variable in order to speed up the convergences.This number is usually larger than the number of bands used to calculated the dielectricconstant. Single quasiparticle energies converge slowly with respect GbndRnge, energy difference behave better. You can use terminator technique to mitigate the slow dependence.}} | ||
<span id=GDamping></span> | <span id=GDamping></span> | ||
{{var-basic|GDamping||}} | {{var-basic|GDamping||}} | ||
{{var-short|}} | {{var-short|Small damping in the Green's function definition, the delta parameter.}} | ||
{{var-usage|}} | {{var-usage|The final result shouuld not depend on that, usually set at 0.1 eV}} | ||
<span id=dScStep></span> | <span id=dScStep></span> | ||
{{var-basic|dScStep||}} | {{var-basic|dScStep|Energy|Real}}{{var-default|0.1}} | ||
{{var-short|}} | {{var-short|Energy step to evaluate Z factors}} | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=DysSolver></span> | <span id=DysSolver></span> | ||
{{var-basic|DysSolver||}} | {{var-basic|DysSolver||}} | ||
{{var-short|}} | {{var-short|Indicates method used to solve the Dyson equation}} | ||
{{var-usage|}} | {{var-usage|"n" Newton linearization (First order expansion around KS eigenvalue), 's' non linear iterative secant method}} | ||
<span id=LifeTrCG></span> | <span id=LifeTrCG></span> | ||
{{var-basic|LifeTrCG||}} | {{var-basic|LifeTrCG||}} | ||
Line 236: | Line 239: | ||
{{var-usage|Need -l option}} | {{var-usage|Need -l option}} | ||
<span id=GfnQPdb></span> | <span id=GfnQPdb></span> | ||
{{var-redirect|GfnQPdb|<code>[[Variables# | {{var-redirect|GfnQPdb|<code>[[Variables#KfnQPdb|KfnQPdb]]</code>}} | ||
<span id=GfnQP_N></span> | <span id=GfnQP_N></span> | ||
{{var-redirect|GfnQP_N|<code>[[Variables# | {{var-redirect|GfnQP_N|<code>[[Variables#KfnQP_N|KfnQP_N]]</code>}} | ||
<span id=GfnQP_E></span> | <span id=GfnQP_E></span> | ||
{{var-redirect|GfnQP_E|<code>[[Variables# | {{var-redirect|GfnQP_E|<code>[[Variables#KfnQP_E|KfnQP_E]]</code>}} | ||
<span id=GfnQP_Z></span> | <span id=GfnQP_Z></span> | ||
{{var-redirect|GfnQP_Z|<code>[[Variables# | {{var-redirect|GfnQP_Z|<code>[[Variables#KfnQP_Z|KfnQP_Z]]</code>}} | ||
<span id=GfnQP_Wv_E></span> | <span id=GfnQP_Wv_E></span> | ||
{{var-redirect|GfnQP_Wv_E|<code>[[Variables# | {{var-redirect|GfnQP_Wv_E|<code>[[Variables#KfnQP_Wv_E|KfnQP_Wv_E]]</code>}} | ||
<span id=GfnQP_Wv></span> | <span id=GfnQP_Wv></span> | ||
{{var-redirect|GfnQP_Wv|<code>[[Variables# | {{var-redirect|GfnQP_Wv|<code>[[Variables#KfnQP_Wv|KfnQP_Wv]]</code>}} | ||
<span id=GfnQP_Wv_dos></span> | <span id=GfnQP_Wv_dos></span> | ||
{{var-redirect|GfnQP_Wv_dos|<code>[[Variables# | {{var-redirect|GfnQP_Wv_dos|<code>[[Variables#KfnQP_Wv_dos|KfnQP_Wv_dos]]</code>}} | ||
<span id=GfnQP_Wc_E></span> | <span id=GfnQP_Wc_E></span> | ||
{{var-redirect|GfnQP_Wc_E|<code>[[Variables# | {{var-redirect|GfnQP_Wc_E|<code>[[Variables#KfnQP_Wc_E|KfnQP_Wc_E]]</code>}} | ||
<span id=GfnQP_Wc></span> | <span id=GfnQP_Wc></span> | ||
{{var-redirect|GfnQP_Wc|<code>[[Variables# | {{var-redirect|GfnQP_Wc|<code>[[Variables#KfnQP_Wc|KfnQP_Wc]]</code>}} | ||
<span id=GfnQP_Wc_dos></span> | <span id=GfnQP_Wc_dos></span> | ||
{{var-redirect|GfnQP_Wc_dos|<code>[[Variables# | {{var-redirect|GfnQP_Wc_dos|<code>[[Variables#KfnQP_Wc_dos|KfnQP_Wc_dos]]</code>}} | ||
<span id=GTermKind></span> | <span id=GTermKind></span> | ||
{{var-basic|GTermKind|None|String}}{{var-verbosity|qp}} | {{var-basic|GTermKind|None|String}}{{var-verbosity|qp}} | ||
{{var-short|Type of terminator to accelarate onvergence with respect empty states}} | {{var-short|Type of terminator to accelarate onvergence with respect empty states}} | ||
{{var-usage|Default is "none", possible options are "BG" for the Bruneval-Gonze terminator. See BG[1]}} | {{var-usage|Default is "none", possible options are "BG" for the Bruneval-Gonze terminator. See BG[1]. It speeds up the convergence with respect to number of empty bands.}} | ||
<span id=GTermEn></span> | <span id=GTermEn></span> | ||
{{var-basic|GTermEn||}}{{var-verbosity|qp}} | {{var-basic|GTermEn||}}{{var-verbosity|qp}} | ||
Line 270: | Line 273: | ||
{{var-basic|ExtendOut |None|Flag}}{{var-verbosity|qp}} | {{var-basic|ExtendOut |None|Flag}}{{var-verbosity|qp}} | ||
{{var-short|Extended output: Print more quantities in qp output files}} | {{var-short|Extended output: Print more quantities in qp output files}} | ||
{{var-usage| | {{var-usage|}} | ||
<span id=OnMassShell ></span> | <span id=OnMassShell ></span> | ||
{{var-basic|OnMassShell ||}}{{var-verbosity|qp}} | {{var-basic|OnMassShell ||}}{{var-verbosity|qp}} | ||
Line 300: | Line 303: | ||
{{var-short|Runlevel name}} | {{var-short|Runlevel name}} | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id= | <span id=NGsBlkXd></span> | ||
{{var-basic| | {{var-basic|NGsBlkXd|RL/Energy|Integer/Real}} | ||
{{var-short|Number of G-vectors or energy cut off in the screening | {{var-short|Number of G-vectors or energy cut off in the screening (response block size)}} | ||
{{var-usage|Determines the size of the dielectric matrix in G-space. Needed for inclusion of local field effects, it should be much smaller than the number of G-vectors needed to expand the wavefunctions. It needs careful convergence.}} | {{var-usage|Determines the size of the dielectric matrix in G-space. Needed for inclusion of local field effects, it should be much smaller than the number of G-vectors needed to expand the wavefunctions (FFTGvecs). It needs careful convergence, and should be converged along with BndsRnXp. Depends strongly on the system inhomogeneity.}} ''See also:'' <code>[[Variables#BndsRnXp FFTGvecs|BndsRnXp FFTGvecs]]</code> | ||
<span id=PPAPntXp></span> | <span id=PPAPntXp></span> | ||
{{var-basic|PPAPntXp|Energy|Real}} | {{var-basic|PPAPntXp|Energy|Real}}{{var-default|1 Ha (27.2114eV)}} | ||
{{var-short|Plasmon pole Imaginary Energy | {{var-short|Plasmon pole Imaginary Energy}} | ||
{{var-usage|The self energy in the imaginary axis should be a smooth function so it should not have a strong dependence on this pole energy. Set it at an higher value of the plasmon energy (see EELS spectrum)}} | {{var-usage|The self energy in the imaginary axis should be a smooth function so it should not have a strong dependence on this pole energy. Set it at an higher value of the plasmon energy (see EELS spectrum). this is the second frequency used to fit the Godby-Needs plasmon-pole model (PPM). If results depend consistently by changing this frequency, the PPM is not adequate for your calculation and it is need to gp beyond that, e.g. Real-axis.}} | ||
<span id=BndsRnXp></span> | <span id=BndsRnXp></span> | ||
{{var-redirect|BndsRnXp|<code>[[Variables#BndsRnXd|BndsRnXd]]</code>}} | {{var-redirect|BndsRnXp|<code>[[Variables#BndsRnXd|BndsRnXd]]</code>}} | ||
Line 332: | Line 335: | ||
{{var-usage|Do not set this manually - set using the appropriate '''-k''' command line option. Allowed values: IP/Hartree/ALDA/LRC/BSfxc. IP indicates no kernel (independent particle level/RPA without local fields)}} | {{var-usage|Do not set this manually - set using the appropriate '''-k''' command line option. Allowed values: IP/Hartree/ALDA/LRC/BSfxc. IP indicates no kernel (independent particle level/RPA without local fields)}} | ||
<span id=X_Threads></span> | <span id=X_Threads></span> | ||
{{var-basic|X_Threads||}} | {{var-basic|X_Threads|None|Integer}} | ||
{{var-short|}} | {{var-short|Number of threads for response functions}} | ||
{{var-usage|}} | {{var-usage|efficient, need extra mem}} | ||
<span id=DIP_Threads></span> | <span id=DIP_Threads></span> | ||
{{var-basic|DIP_Threads||}} | {{var-basic|DIP_Threads||}} | ||
Line 342: | Line 345: | ||
{{var-basic|QpntsRXd|None|Range}} | {{var-basic|QpntsRXd|None|Range}} | ||
{{var-short|Range of indexes of q-points/transferred momenta to be computed.}} | {{var-short|Range of indexes of q-points/transferred momenta to be computed.}} | ||
{{var-usage|Set to 1 1 to select just the long wavelength term.}} | {{var-usage|Set to 1 1 to select just the long wavelength term. Range from 1:nqpt.}} | ||
<span id=BndsRnXd></span> | <span id=BndsRnXd></span> | ||
{{var-basic|BndsRnXd|None|Range}} | {{var-basic|BndsRnXd|None|Range}} | ||
{{var-short|Bands range: Specifies the number of bands entering in the sum over states in the RPA response function}} | {{var-short|Bands range: Specifies the number of bands entering in the sum over states in the RPA response function}} | ||
{{var-usage|It needs several empty states. See also GTermKind variable in order to speed up the convergences.}} ''See also:'' <code>[[Variables#GTermKind|GTermKind]]</code> | {{var-usage|It needs several empty states. See also GTermKind variable in order to speed up the convergences. Reduce range in order to lower memory. In metals it includes partially filled bands. See also EhEngyXd.}} ''See also:'' <code>[[Variables#GTermKind|GTermKind]]</code> | ||
<span id=EnRngeXd></span> | <span id=EnRngeXd></span> | ||
{{var-basic|EnRngeXd|Energy|Range}} | {{var-basic|EnRngeXd|Energy|Range}} | ||
{{var-short|Energy range the spectrum is calculated across.}} | {{var-short|Energy range the spectrum is calculated across.}} | ||
{{var-usage|Extremae of the energy range across which optical spectra will be computed.}} | {{var-usage|Extremae of the energy range across which optical spectra will be computed.}} ''See also:'' <code>[[Variables#EhEngyXd|EhEngyXd]]</code> | ||
<span id=DmRngeXd></span> | <span id=DmRngeXd></span> | ||
{{var-basic|DmRngeXd|Energy|Range}} | {{var-basic|DmRngeXd|Energy|Range}} | ||
Line 363: | Line 366: | ||
{{var-short|Electric field direction}} | {{var-short|Electric field direction}} | ||
{{var-usage|Pay attention how the system is oriented when treating non 3D systems and choose a direction in the plane/axis where your system lies}} | {{var-usage|Pay attention how the system is oriented when treating non 3D systems and choose a direction in the plane/axis where your system lies}} | ||
<span id=FxcGRLc></span> | |||
{{var-basic|FxcGRLc||}} | |||
{{var-short|XC-kernel size}} | |||
{{var-usage|Needs convergence study. Much less than FFTGvecs}} | |||
<span id=LRC_alpha></span> | |||
{{var-basic|LRC_alpha||}} | |||
{{var-short|LRC fitting parameter}} | |||
{{var-usage|Long-range tail of the fxc kernel. Depends on the system: the larger the screening the smaller this parameter.}} | |||
<span id=XfnQPdb></span> | <span id=XfnQPdb></span> | ||
{{var- | {{var-redirect|XfnQPdb|<code>[[Variables#KfnQPdb|KfnQPdb]]</code>}} | ||
<span id=XfnQP_N></span> | <span id=XfnQP_N></span> | ||
{{var- | {{var-redirect|XfnQP_N|<code>[[Variables#KfnQP_N|KfnQP_N]]</code>}} | ||
<span id=XfnQP_E></span> | <span id=XfnQP_E></span> | ||
{{var- | {{var-redirect|XfnQP_E|<code>[[Variables#KfnQP_E|KfnQP_E]]</code>}} | ||
<span id=XfnQP_Z></span> | <span id=XfnQP_Z></span> | ||
{{var- | {{var-redirect|XfnQP_Z|<code>[[Variables#KfnQP_Z|KfnQP_Z]]</code>}} | ||
<span id=XfnQP_Wv_E></span> | <span id=XfnQP_Wv_E></span> | ||
{{var- | {{var-redirect|XfnQP_Wv_E|<code>[[Variables#KfnQP_Wv_E|KfnQP_Wv_E]]</code>}} | ||
<span id=XfnQP_Wv></span> | <span id=XfnQP_Wv></span> | ||
{{var- | {{var-redirect|XfnQP_Wv|<code>[[Variables#KfnQP_Wv|KfnQP_Wv]]</code>}} | ||
<span id=XfnQP_Wv_dos></span> | <span id=XfnQP_Wv_dos></span> | ||
{{var- | {{var-redirect|XfnQP_Wv_dos|<code>[[Variables#KfnQP_Wv_dos|KfnQP_Wv_dos]]</code>}} | ||
<span id=XfnQP_Wc_E></span> | <span id=XfnQP_Wc_E></span> | ||
{{var- | {{var-redirect|XfnQP_Wc_E|<code>[[Variables#KfnQP_Wc_E|KfnQP_Wc_E]]</code>}} | ||
<span id=XfnQP_Wc></span> | <span id=XfnQP_Wc></span> | ||
{{var- | {{var-redirect|XfnQP_Wc|<code>[[Variables#KfnQP_Wc|KfnQP_Wc]]</code>}} | ||
<span id=XfnQP_Wc_dos></span> | <span id=XfnQP_Wc_dos></span> | ||
{{var- | {{var-redirect|XfnQP_Wc_dos|<code>[[Variables#KfnQP_Wc_dos|KfnQP_Wc_dos]]</code>}} | ||
<span id=NonPDirs></span> | <span id=NonPDirs></span> | ||
{{var-basic|NonPDirs||}}{{var-verbosity|resp}} | {{var-basic|NonPDirs||}}{{var-verbosity|resp}} | ||
Line 415: | Line 405: | ||
{{var-basic|GrFnTpXd||}}{{var-verbosity|resp}} | {{var-basic|GrFnTpXd||}}{{var-verbosity|resp}} | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | {{var-usage|Greens function: T/R/r/Ta/Ra. "R" = resonant gives the causal response function}} | ||
<span id=DmERefXd></span> | <span id=DmERefXd></span> | ||
{{var-basic|DmERefXd||}}{{var-verbosity|resp}} | {{var-basic|DmERefXd||}}{{var-verbosity|resp}} | ||
Line 433: | Line 423: | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=EhEngyXd></span> | <span id=EhEngyXd></span> | ||
{{var-basic|EhEngyXd||}}{{var-verbosity|resp}} | {{var-basic|EhEngyXd|Energy|Range}}{{var-default|(-1,-1)}}{{var-verbosity|resp}} | ||
{{var-short|}} | {{var-short|Electron-hole energy range}} | ||
{{var-usage|}} | {{var-usage|An alternative way to BndsRnXd to restrict transitions, but will not reduce memory}} | ||
<span id=DrClassic></span> | <span id=DrClassic></span> | ||
{{var-basic|DrClassic||}}{{var-verbosity|resp}} | {{var-basic|DrClassic||}}{{var-verbosity|resp}} | ||
Line 491: | Line 481: | ||
{{var-basic|X_finite_q_nCPU_LinAlg_INV||}}{{var-verbosity|par}} | {{var-basic|X_finite_q_nCPU_LinAlg_INV||}}{{var-verbosity|par}} | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | |||
<span id=X_all_q_CPU></span> | |||
{{var-basic|X_all_q_CPU||}} | |||
{{var-short|CPUs for each role}} | |||
{{var-usage|}} | |||
<span id=X_all_q_ROLEs></span> | |||
{{var-basic|X_all_q_ROLEs||}} | |||
{{var-short|CPUs roles (q,k,c,v)}} | |||
{{var-usage|MPI-c,v best memory distribution. MPI-k efficient, some memory replication. MPI-q may lead to load unbalance.}} | |||
<span id=X_all_q_nCPU_LinAlg_INV></span> | |||
{{var-basic|X_all_q_nCPU_LinAlg_INV||}} | |||
{{var-short|CPUs for matrix inv}} | |||
{{var-usage|}} | {{var-usage|}} | ||
===Optics/BSE in eh-space=== | ===Optics/BSE in eh-space=== | ||
Line 510: | Line 512: | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=BEnRange></span> | <span id=BEnRange></span> | ||
{{var-basic|BEnRange||}} | {{var-basic|BEnRange|Energy|Range}} | ||
{{var-short|}} | {{var-short|Energy range for computing the macroscopic dielectric function using BSE}} | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=BDmRange></span> | <span id=BDmRange></span> | ||
{{var-basic|BDmRange||}} | {{var-basic|BDmRange|Energy|Range}}{{var-default|(0.10000 , 0.10000)}} | ||
{{var-short|}} | {{var-short|Broadening for the BSE calculation}} | ||
{{var-usage|}} | {{var-usage|Lorentzian broadening changes linearly between the two values}} | ||
<span id=BEnSteps></span> | <span id=BEnSteps></span> | ||
{{var-basic|BEnSteps||}} | {{var-basic|BEnSteps|None|Integer}} | ||
{{var-short|}} | {{var-short|Number of evenly spaced energy points in spectrum}} | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=BLongDir></span> | <span id=BLongDir></span> | ||
{{var-basic|BLongDir||}} | {{var-basic|BLongDir|None|Vector}} | ||
{{var-short|}} | {{var-short|Direction of the longitudinal perturbation}} | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=BSEBands></span> | <span id=BSEBands></span> | ||
{{var-basic|BSEBands|None|Range}} | {{var-basic|BSEBands|None|Range}} | ||
{{var-short|Bands range: Specifies the band states from which the electron-hole basis of the BSE kernel is constructed}} | {{var-short|Bands range: Specifies the band states from which the electron-hole basis of the BSE kernel is constructed}} | ||
{{var-usage|Choose few bands close to the Fermi level.}} | {{var-usage|Choose few bands close to the Fermi level. Size scales rapidly with the number of bands: BSE is rewritten as an eigenvalue problem for the 2 particle Hamiltonian: size of matrix [Nv x Nc x NKBZ ] x [Nv x Nc x NKBZ]}} | ||
<span id=KfnQPdb></span> | <span id=KfnQPdb></span> | ||
{{var- | {{var-basic|KfnQPdb|None|String}}{{var-verbosity|qp}} | ||
{{var-short|Database for QP corrections.}} | |||
{{var-usage|From a previous GW calculation. An interpolation of the missing QP-values on the basis of the QP-database is available}} ''See also:'' <code>[[Variables#KfnQP_E|KfnQP_E]]</code> | |||
::Format: "<what> < <path>/ndb.QP" with <what> = E,W,Z for QP energy correction, QP width and renormalization factor. For example, from a previous GW calculation use KfnQPdb= "E < ./SAVE/ndb.QP" | |||
<span id=KfnQP_N></span> | <span id=KfnQP_N></span> | ||
{{var- | {{var-basic|KfnQP_N|None|Integer}}{{var-verbosity|qp}} | ||
{{var-short|Interpolation neighbours?}} | |||
{{var-usage|}} | |||
<span id=KfnQP_E></span> | <span id=KfnQP_E></span> | ||
{{var- | {{var-basic|KfnQP_E|eV/None/None|Scissors}}{{var-verbosity|qp}} | ||
{{var-short|QP corrections using a scissor operator and stretching coefficients for the conduction/valence bandwidths.}} | |||
{{var-usage|Insert values from a previous GW calculation or experiment. This is a lighter way to include GW corrections than KfnQP_E. Format is: scissor | stretch conduction | stretch valence.}} ''See also:'' <code>[[Variables#KfnQPdb|KfnQPdb]]</code> | |||
<span id=KfnQP_Z></span> | <span id=KfnQP_Z></span> | ||
{{var- | {{var-basic|KfnQP_Z||}}{{var-verbosity|qp}} | ||
{{var-short|}} | |||
{{var-usage|}} | |||
<span id=KfnQP_Wv_E></span> | <span id=KfnQP_Wv_E></span> | ||
{{var- | {{var-basic|KfnQP_Wv_E||}}{{var-verbosity|qp}} | ||
{{var-short|}} | |||
{{var-usage|}} | |||
<span id=KfnQP_Wv></span> | <span id=KfnQP_Wv></span> | ||
{{var- | {{var-basic|KfnQP_Wv||}}{{var-verbosity|qp}} | ||
{{var-short|}} | |||
{{var-usage|}} | |||
<span id=KfnQP_Wv_dos></span> | <span id=KfnQP_Wv_dos></span> | ||
{{var- | {{var-basic|KfnQP_Wv_dos||}}{{var-verbosity|qp}} | ||
{{var-short|}} | |||
{{var-usage|}} | |||
<span id=KfnQP_Wc_E></span> | <span id=KfnQP_Wc_E></span> | ||
{{var- | {{var-basic|KfnQP_Wc_E||}}{{var-verbosity|qp}} | ||
{{var-short|}} | |||
{{var-usage|}} | |||
<span id=KfnQP_Wc></span> | <span id=KfnQP_Wc></span> | ||
{{var- | {{var-basic|KfnQP_Wc||}}{{var-verbosity|qp}} | ||
{{var-short|}} | |||
{{var-usage|}} | |||
<span id=KfnQP_Wc_dos></span> | <span id=KfnQP_Wc_dos></span> | ||
{{var- | {{var-basic|KfnQP_Wc_dos||}}{{var-verbosity|qp}} | ||
{{var-short|}} | |||
{{var-usage|}} | |||
<span id=BoseCut></span> | <span id=BoseCut></span> | ||
{{var-basic|BoseCut||}}{{var-verbosity|gen}} | {{var-basic|BoseCut||}}{{var-verbosity|gen}} | ||
Line 587: | Line 610: | ||
<span id=DrudeWBS></span> | <span id=DrudeWBS></span> | ||
{{var-basic|DrudeWBS||}}{{var-verbosity|resp}} | {{var-basic|DrudeWBS||}}{{var-verbosity|resp}} | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | {{var-usage|}} | ||
Line 609: | Line 628: | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | {{var-usage|}} | ||
===Bethe Salpeter | ===Bethe Salpeter Kernel=== | ||
<span id=bsk></span> | <span id=bsk></span> | ||
{{var-basic|bsk||}} | {{var-basic|bsk||}} | ||
Line 627: | Line 642: | ||
{{var-usage|Try using the diagonal terms only first (BSresKmod BScplKmod variables); use a smaller number than the dimension of the Screened interaction matrix}} | {{var-usage|Try using the diagonal terms only first (BSresKmod BScplKmod variables); use a smaller number than the dimension of the Screened interaction matrix}} | ||
<span id=WehCpl></span> | <span id=WehCpl></span> | ||
{{var-basic|WehCpl||}} | {{var-basic|WehCpl||Flag}} | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | {{var-usage|}} | ||
Line 635: | Line 650: | ||
{{var-usage|}} | {{var-usage|}} | ||
<span id=BSHayTrs></span> | <span id=BSHayTrs></span> | ||
{{var-basic|BSHayTrs|None|Real}} | {{var-basic|BSHayTrs|None|Real}}{{var-default|-0.02}} | ||
{{var-short|Haydock | {{var-short|Threshold for accuracy of the iterative Haydock process}} | ||
{{var-usage|}} | {{var-usage|Negative sign: average difference, over the energy range, of two consecutive approximations to the spectrum. Positive sign: maximum difference, over the energy range, of two consecutive approximations to the spectrum}} | ||
<span id=BSSInvMode></span> | <span id=BSSInvMode></span> | ||
{{var-basic|BSSInvMode||}} | {{var-basic|BSSInvMode||}} | ||
Line 650: | Line 665: | ||
{{var-short|}} | {{var-short|}} | ||
{{var-usage|}} | {{var-usage|}} | ||
===Non-linear=== | |||
<span id=nloptics></span> | |||
{{var-basic|nloptics||String}} | |||
{{var-short|Runlevel name}} | |||
{{var-usage|}} | |||
<span id=NLBands></span> | |||
{{var-basic|NLBands||}}{{var-default|From ns.ndb1}} | |||
{{var-short|Number of bands}} | |||
{{var-usage|}} | |||
<span id=NLverbosity></span> | |||
{{var-basic|NLverbosity||String}}{{var-default|low}} | |||
{{var-short|Verbosity level "high" or "low"}} | |||
{{var-usage|}} | |||
<span id=NLstep></span> | |||
{{var-basic|NLstep|fs|Real}}{{var-default|0.01}} | |||
{{var-short|Time step}} | |||
{{var-usage|}} | |||
<span id=NLtime></span> | |||
{{var-basic|NLtime|fs|Real}}{{var-default|-1}} | |||
{{var-short|Simulaiton length}} | |||
{{var-usage|If negative automatically set the right value for SHG}} | |||
::This value is invertionaly proportional to NLDamping | |||
<span id=NLintegrator></span> | |||
{{var-basic|NLintegrator||String}}{{var-default|INVINT}} | |||
{{var-short|Integrator}} | |||
{{var-usage|}} | |||
<span id=NLCorrelation ></span> | |||
{{var-basic|NLCorrelation ||String}}{{var-default|IPA (independent particle approximation)}} | |||
{{var-short|Correlation level}} | |||
{{var-usage|}} | |||
<span id=NLDamping></span> | |||
{{var-basic|NLDamping|eV|Real}}{{var-default|0.2}} | |||
{{var-short|Damping (or dephasing)}} | |||
{{var-usage|}} | |||
<span id=EvalCurrent></span> | |||
{{var-basic|EvalCurrent||Bool}}{{var-default|Off}} | |||
{{var-short|}} | |||
{{var-usage|Calculate the current if true}} | |||
<span id=HARRLvcs></span> | |||
{{var-basic|HARRLvcs||Integer}}{{var-default|from ns.ndb1}} | |||
{{var-short|Number of G-vectors in the Hartree}} | |||
{{var-usage|}} | |||
<span id=EXXRLvcs></span> | |||
{{var-basic|EXXRLvcs||Integer}}{{var-default|from Collisions}} | |||
{{var-short|Number of G-vectors in the Screened Exchange}} | |||
{{var-usage|}} | |||
<span id=ExtF_Dir></span> | |||
{{var-basic|ExtF_Dir|None|Vector}}{{var-default|(1,0,0)}} | |||
{{var-short|Direction of the external field}} | |||
{{var-usage|}} | |||
<span id=ExtF_kind></span> | |||
{{var-basic|ExtF_kind||String}}{{var-default|SOFTSIN}} | |||
{{var-short|Field kind}} | |||
{{var-usage|Type of external field, for non-linear response only SIN or SOFTSIN}} |
Revision as of 11:27, 6 November 2019
This page gives a brief explanation of the many input variables used by Yambo.
Variables apply to the standard yambo
executable unless indicated otherwise.
Default values are read from the indicated database file unless stated otherwise.
Required verbosity flags are indicated where appropriate.
Units can have the following values:
- None = no unit
- RL = number of G-vectors
- Energy = Ha, mHa (Hartree atomic units), Ry, mRy (Rydberg atomic units), eV, meV (electron volts), K, THz, GHz
- Length = Bohr atomic units a.u.
Formats are described on the Format page.
DO NOT EDIT THIS PAGE DIRECTLY!!! CHANGES WILL BE LOST!!!
All Variables (alphabetical order)
BDmRange
BEnRange
BEnSteps
BLongDir
BndsRnXd
BndsRnXp
BoseCut
BoseTemp
BS_CPU
BS_nCPU_LinAlg_DIAGO
BS_nCPU_LinAlg_INV
BS_ROLEs
bse
BSEBands
BSEmod
BSENGBlk
BSENGexx
BSEPSInvTrs
BSHayTrs
bsk
BSKmod
BSSInvMode
BSSInvPFratio
BSSmod
CGrdSpXd
chi
ChiLinAlgMod
Chimod
cohsex
CUTBox
CUTCol_test
CUTCylLen
CUTGeo
CUTRadius
CUTwsGvec
DbGdQsize
DbGdQsize
DBsFRAGpm
DBsIOoff
DIP_Threads
DipApproach
DipApproach
DipPDirect
DipPDirect
DmERefXd
DmRngeXd
DmRngeXp
DrClassic
DrudeWBS
DrudeWXd
dScStep
DysSolver
EhEngyXd
ElecTemp
Em1Anys
em1d
em1s
EMStpsXd
EnRngeXd
EnRngeXp
ETStpsXd
ETStpsXp
EvalCurrent
ExtendOut
ExtF_Dir
ExtF_kind
EXXRLvcs
EXXRLvcs
FFTGvecs
FxcGRLc
Gauge
GbndRnge
GDamping
GDmRnge
GEnRnge
GEnSteps
GfnQP_E
GfnQP_N
GfnQP_Wc
GfnQP_Wc_dos
GfnQP_Wc_E
GfnQP_Wv
GfnQP_Wv_dos
GfnQP_Wv_E
GfnQP_Z
GfnQPdb
GrFnTpXd
GTermEn
GTermKind
gw0
HARRLvcs
HF_and_locXC
IDEm1Ref
IkSigLim
IkXLim
K_Threads
KfnQP_E
KfnQP_N
KfnQP_Wc
KfnQP_Wc_dos
KfnQP_Wc_E
KfnQP_Wv
KfnQP_Wv_dos
KfnQP_Wv_E
KfnQP_Z
KfnQPdb
LifeTrCG
LongDrXd
LongDrXp
LRC_alpha
MaxGvecs
MEM_tresh
MetDamp
Nelectro
NewtDchk
NGsBlkXd
NLBands
NLCorrelation
NLDamping
NLintegrator
NLogCPUs
nloptics
NLstep
NLtime
NLverbosity
NoCondSumRule
NonPDirs
OccTresh
OnMassShell
optics
PAR_def_mode
PAR_def_mode
PPAPntXp
Qdirection
QPerange
QPerange
QpgFull
QPkrange
QPkrange
QpntsRXd
QptCoord
QShiftOrder
RandGvec
RandQpts
Reflectivity
rim_cut
SE_CPU
SE_ROLEs
SE_Threads
setup
ShiftedPaths
ShiftedPaths
StdoHash
UseNLCC
VXCRLvcs
WehCpl
WFbuffIO
X_all_q_CPU
X_all_q_nCPU_LinAlg_INV
X_all_q_ROLEs
X_finite_q_CPU
X_finite_q_nCPU_LinAlg_INV
X_finite_q_ROLEs
X_q_0_CPU
X_q_0_nCPU_LinAlg_INV
X_q_0_ROLEs
X_Threads
XfnQP_E
XfnQP_N
XfnQP_Wc
XfnQP_Wc_dos
XfnQP_Wc_E
XfnQP_Wv
XfnQP_Wv_dos
XfnQP_Wv_E
XfnQP_Z
XfnQPdb
Global options
Nelectro
(Units: None, Format: )Default: From ns.db1 Verbosity:-V gen
- Meaning: Electrons number
- Usage:
StdoHash
(Units: None, Format: Integer)Default: 40 Verbosity:-V io
- Meaning: Number of hashes in live-timing output.
- Usage: Might be useful to increase for very long jobs, or if the code is hanging.
DBsIOoff
(Units: None, Format: String)Default: None Verbosity:-V io
- Meaning: List of databases not written to disk
- Usage: Space-separated list of DB with NO I/O. DB is (DIP,X,HF,COLLs,J,GF,CARRIERs,OBS,W,SC,BS,ALL). No ndb.* file is written.
- Example: DBsIOoff= "DIP" means ndb.dip_iR_and_P_fragment_* is not written, but stored in memory if Yambo needs it.
DBsFRAGpm
(Units: None, Format: String)Default: None Verbosity:-V io
- Meaning: List of databases to be fragmented
- Usage: Space-separated list of +DB to FRAG and -DB to NOT FRAG, where DB is (DIP,X,W,HF,COLLS,K,BS,QINDX,RT,ELP. Fragments the database. Smaller files (e.g. ndb.em1s_fragment_*) are created instead of a large one (e.g. ndb.em1s). Faster read/write operations in parallel runs
WFbuffIO
(Units: None, Format: Flag)Default: Off Verbosity:-V io
- Meaning: Wave-functions buffered I/O
- Usage: Parts of the WFs are stored by the node. Nodes communicate when these elements are needed. Memory heavy.
MEM_tresh
(Units: None, Format: ) Verbosity:-V gen
- Meaning: Threshold on traced memory allocations/deallocations
- Usage:
FFTGvecs
(Units: RL/Energy, Format: Integer/Real) Verbosity:-V RL
- Meaning: Number of G-vectors or energy cut off for expanding the wavefunctions/FFT transforms
- Usage: Determines size (memory) of calculation. Corresponds to cutoff in DFT calculation; can be much less than geometry cutoff. It needs careful convergence.
Initialization
MaxGvecs
(Units: RL/Energy, Format: Integer/Real) Verbosity:-V RL
- Meaning: Maximum number of G-vectors that can be used by code
- Usage:
IkSigLim
(Units: Range, Format: Integer ) Verbosity:-V kpt
- Meaning: QP K-points indices range
- Usage:
Random integration method and cutoff Coulomb potentials
RandQpts
(Units: RL, Format: Integer)- Meaning: Number of random q-points in the BZ to perform Monte Carlo Integration,
- Usage: It needs convergence: values like 10^6 can be used to ensure convergence. Needed for non 3D system to avoid divergences for small q, and needed to build cutoff potential with box shape See also:
RandGvec
CUTGeo
(Units: None, Format: String)- Meaning: Cutoff geometry
- Usage: Allowed values are: "box/cylinder/sphere/ws X/Y/Z/XY...", e.g. "box xy" or "cylinder y". WS is the suggested option for orthorhombic cells. Use sphere (0D) for molecules, cylinder (1D) for polymers and nanotubes, box (0D, 1D, 2D) for all geometries. XYZ: cut in all directions. Box: XY: cut in XY only. Cylinder X/Y/Z indicates cylinder axis. When using Box shapes, the RIM is also needed to calculate the potential. In Box for large enough boxes assigns Box side slighlty smaller than the cell box See also:
CUTBox/CUTRadius/CUTCylLen/CUTwsGvec
CUTwsGvec
(Units: Energy, Format: Real)- Meaning: Energy cut off on modified component
- Usage: {{{1}}} See also:
CUTGeo
RandGvec
(Units: Energy, Format: ) Verbosity:-V RL
- Meaning: Number of G vectors the RIM is calculated at
- Usage: {{{1}}}
CUTCol_test
(Units: None, Format: Flag)- Meaning: Provides in oututput the truncated Coulomb potential in real space
- Usage: Useful option for debugging purpose
Hartree-Fock Self-energy and Vxc
EXXRLvcs
(Units: RL/Energy, Format: Integer/Real)- Meaning: Number of G-vectors used in the sum of the exchange self-energy Sx.
- Usage: It needs careful convergence. As it is not particularly time consuming, large values can be used to ensure convergence. Generally a large number is needed as the QP energies show a slow convergence. The calcualtion of the exchange part is rather fast.
QPkrange
(Units: None, Format: Range)- Meaning: Range of states (nk) where GW/Sx elements are calculated
- Usage: Careful use of fewer k-points and bands reduces the calculation time; yambo will interpolate the rest. Format is: first k-point See also:
QPerange
QPerange
(Units: None/Energy, Format: Range) Verbosity:-V qp
- Meaning:
- Usage: Careful use of fewer k-points and bands reduces the calculation time; yambo will interpolate the rest. Format is: first k-point See also:
QPkrange
SE_ROLEs
(Units: None, Format: String) Verbosity:-V par
- Meaning: CPUs roles (q,qp,b)
- Usage: {{{1}}}
SE_Threads
(Units: None, Format: Integer) Verbosity:-V par
- Meaning: Number of threads for self-energy
- Usage: Very efficient.
GW
QPkrange
(Units: None, Format: Range)- Meaning: K-points and band range where you want to calculate the GW correction.
- Usage: If interested in non consecutive kpoints or bands multiple rows can be also considered. The syntax is first kpoint
GbndRnge
(Units: None, Format: Range)- Meaning: Specifies the range of bands entering in the sum over states in the correlation part of the self energy
- Usage: It needs several empty states. Single quasiparticle states converges very slowly with respect GbndRnge, energy differences (e.g. gaps) behave better. See also GTermKind variable in order to speed up the convergences.This number is usually larger than the number of bands used to calculated the dielectricconstant. Single quasiparticle energies converge slowly with respect GbndRnge, energy difference behave better. You can use terminator technique to mitigate the slow dependence.
GDamping
(Units: , Format: )- Meaning: Small damping in the Green's function definition, the delta parameter.
- Usage: The final result shouuld not depend on that, usually set at 0.1 eV
DysSolver
(Units: , Format: )- Meaning: Indicates method used to solve the Dyson equation
- Usage: "n" Newton linearization (First order expansion around KS eigenvalue), 's' non linear iterative secant method
GfnQPdb
SeeKfnQPdb
GfnQP_N
SeeKfnQP_N
GfnQP_E
SeeKfnQP_E
GfnQP_Z
SeeKfnQP_Z
GfnQP_Wv_E
SeeKfnQP_Wv_E
GfnQP_Wv
SeeKfnQP_Wv
GfnQP_Wv_dos
SeeKfnQP_Wv_dos
GfnQP_Wc_E
SeeKfnQP_Wc_E
GfnQP_Wc
SeeKfnQP_Wc
GfnQP_Wc_dos
SeeKfnQP_Wc_dos
GTermKind
(Units: None, Format: String) Verbosity:-V qp
- Meaning: Type of terminator to accelarate onvergence with respect empty states
- Usage: Default is "none", possible options are "BG" for the Bruneval-Gonze terminator. See BG[1]. It speeds up the convergence with respect to number of empty bands.
ExtendOut
(Units: None, Format: Flag) Verbosity:-V qp
- Meaning: Extended output: Print more quantities in qp output files
- Usage:
Screening
NGsBlkXd
(Units: RL/Energy, Format: Integer/Real)- Meaning: Number of G-vectors or energy cut off in the screening (response block size)
- Usage: Determines the size of the dielectric matrix in G-space. Needed for inclusion of local field effects, it should be much smaller than the number of G-vectors needed to expand the wavefunctions (FFTGvecs). It needs careful convergence, and should be converged along with BndsRnXp. Depends strongly on the system inhomogeneity. See also:
BndsRnXp FFTGvecs
PPAPntXp
(Units: Energy, Format: Real)Default: 1 Ha (27.2114eV)- Meaning: Plasmon pole Imaginary Energy
- Usage: The self energy in the imaginary axis should be a smooth function so it should not have a strong dependence on this pole energy. Set it at an higher value of the plasmon energy (see EELS spectrum). this is the second frequency used to fit the Godby-Needs plasmon-pole model (PPM). If results depend consistently by changing this frequency, the PPM is not adequate for your calculation and it is need to gp beyond that, e.g. Real-axis.
BndsRnXp
SeeBndsRnXd
EnRngeXp
SeeEnRngeXd
DmRngeXp
SeeDmRngeXd
ETStpsXp
SeeETStpsXd
LongDrXp
SeeLongDrXd
Optics/chi in G-space
Chimod
(Units: None, Format: String)- Meaning: Type of kernel in TDDFT Dyson equation
- Usage: Do not set this manually - set using the appropriate -k command line option. Allowed values: IP/Hartree/ALDA/LRC/BSfxc. IP indicates no kernel (independent particle level/RPA without local fields)
X_Threads
(Units: None, Format: Integer)- Meaning: Number of threads for response functions
- Usage: efficient, need extra mem
QpntsRXd
(Units: None, Format: Range)- Meaning: Range of indexes of q-points/transferred momenta to be computed.
- Usage: Set to 1 1 to select just the long wavelength term. Range from 1:nqpt.
BndsRnXd
(Units: None, Format: Range)- Meaning: Bands range: Specifies the number of bands entering in the sum over states in the RPA response function
- Usage: It needs several empty states. See also GTermKind variable in order to speed up the convergences. Reduce range in order to lower memory. In metals it includes partially filled bands. See also EhEngyXd. See also:
GTermKind
EnRngeXd
(Units: Energy, Format: Range)- Meaning: Energy range the spectrum is calculated across.
- Usage: Extremae of the energy range across which optical spectra will be computed. See also:
EhEngyXd
DmRngeXd
(Units: Energy, Format: Range)- Meaning: Determines the damping used across the requested spectral range.
- Usage: Typically this is kept constant. If different values are used, the damping at each energy will be interpolated linearly. This can be useful when poor k-point sampling leads to large oscillations at higher energy.
ETStpsXd
(Units: None, Format: Integer)- Meaning: Number of energy steps in computing X
- Usage: Determines the number of steps in energy the response function/spectrum is computed for in the desired range defined by EnRngeXd. In the case of a full frequency GW the range is fixed by the occupied/empty states included in the calculation, the number of frequency requires a careful check
LongDrXd
(Units: Length, Format: Vector)- Meaning: Electric field direction
- Usage: Pay attention how the system is oriented when treating non 3D systems and choose a direction in the plane/axis where your system lies
FxcGRLc
(Units: , Format: )- Meaning: XC-kernel size
- Usage: Needs convergence study. Much less than FFTGvecs
LRC_alpha
(Units: , Format: )- Meaning: LRC fitting parameter
- Usage: Long-range tail of the fxc kernel. Depends on the system: the larger the screening the smaller this parameter.
XfnQPdb
SeeKfnQPdb
XfnQP_N
SeeKfnQP_N
XfnQP_E
SeeKfnQP_E
XfnQP_Z
SeeKfnQP_Z
XfnQP_Wv_E
SeeKfnQP_Wv_E
XfnQP_Wv
SeeKfnQP_Wv
XfnQP_Wv_dos
SeeKfnQP_Wv_dos
XfnQP_Wc_E
SeeKfnQP_Wc_E
XfnQP_Wc
SeeKfnQP_Wc
XfnQP_Wc_dos
SeeKfnQP_Wc_dos
DrudeWXd
(Units: Energy, Format: Complex) Verbosity:-V resp
- Meaning: Drude plasmon energy and inverse lifetime.
- Usage:
EhEngyXd
(Units: Energy, Format: Range)Default: (-1,-1) Verbosity:-V resp
- Meaning: Electron-hole energy range
- Usage: An alternative way to BndsRnXd to restrict transitions, but will not reduce memory
X_all_q_ROLEs
(Units: , Format: )- Meaning: CPUs roles (q,k,c,v)
- Usage: MPI-c,v best memory distribution. MPI-k efficient, some memory replication. MPI-q may lead to load unbalance.
Optics/BSE in eh-space
BEnRange
(Units: Energy, Format: Range)- Meaning: Energy range for computing the macroscopic dielectric function using BSE
- Usage:
BDmRange
(Units: Energy, Format: Range)Default: (0.10000 , 0.10000)- Meaning: Broadening for the BSE calculation
- Usage: Lorentzian broadening changes linearly between the two values
BEnSteps
(Units: None, Format: Integer)- Meaning: Number of evenly spaced energy points in spectrum
- Usage:
BSEBands
(Units: None, Format: Range)- Meaning: Bands range: Specifies the band states from which the electron-hole basis of the BSE kernel is constructed
- Usage: Choose few bands close to the Fermi level. Size scales rapidly with the number of bands: BSE is rewritten as an eigenvalue problem for the 2 particle Hamiltonian: size of matrix [Nv x Nc x NKBZ ] x [Nv x Nc x NKBZ]
KfnQPdb
(Units: None, Format: String) Verbosity:-V qp
- Meaning: Database for QP corrections.
- Usage: From a previous GW calculation. An interpolation of the missing QP-values on the basis of the QP-database is available See also:
KfnQP_E
- Format: "<what> < <path>/ndb.QP" with <what> = E,W,Z for QP energy correction, QP width and renormalization factor. For example, from a previous GW calculation use KfnQPdb= "E < ./SAVE/ndb.QP"
KfnQP_E
(Units: eV/None/None, Format: Scissors) Verbosity:-V qp
- Meaning: QP corrections using a scissor operator and stretching coefficients for the conduction/valence bandwidths.
- Usage: Insert values from a previous GW calculation or experiment. This is a lighter way to include GW corrections than KfnQP_E. Format is: scissor See also:
KfnQPdb
Bethe Salpeter Kernel
BSENGexx
(Units: RL/Energy, Format: Integer/Real)- Meaning: G-components to be summed in the Exchange part of the BSE kernel, which takes into account the Local-field effects
- Usage: Small values increase speed. Convergence tests are required.
BSENGBlk
(Units: RL/Energy, Format: Integer/Real)- Meaning: Number of RL-components of the Screened Coulomb Potential matrix W(G,G'), to be included in the sum of the e-h attractive Kernel
- Usage: Try using the diagonal terms only first (BSresKmod BScplKmod variables); use a smaller number than the dimension of the Screened interaction matrix
BSHayTrs
(Units: None, Format: Real)Default: -0.02- Meaning: Threshold for accuracy of the iterative Haydock process
- Usage: Negative sign: average difference, over the energy range, of two consecutive approximations to the spectrum. Positive sign: maximum difference, over the energy range, of two consecutive approximations to the spectrum
Non-linear
NLtime
(Units: fs, Format: Real)Default: -1- Meaning: Simulaiton length
- Usage: If negative automatically set the right value for SHG
- This value is invertionaly proportional to NLDamping
NLCorrelation
(Units: , Format: String)Default: IPA (independent particle approximation)- Meaning: Correlation level
- Usage:
HARRLvcs
(Units: , Format: Integer)Default: from ns.ndb1- Meaning: Number of G-vectors in the Hartree
- Usage:
EXXRLvcs
(Units: , Format: Integer)Default: from Collisions- Meaning: Number of G-vectors in the Screened Exchange
- Usage:
ExtF_Dir
(Units: None, Format: Vector)Default: (1,0,0)- Meaning: Direction of the external field
- Usage: