How to analyse excitons: Difference between revisions

From The Yambo Project
Jump to navigation Jump to search
No edit summary
Line 18: Line 18:


  $ ls ./SAVE
  $ ls ./SAVE
  ndb.gops ns.kb_pp_pwscf_fragment_2 ns.kb_pp_pwscf_fragment_7 ns.wf_fragments_4_1
  ndb.gops ndb.kindx ns.db1  ns.kb_pp_pwscf_fragment_1....
ndb.kindx ns.kb_pp_pwscf_fragment_3 ns.wf ns.wf_fragments_5_1
ns.db1 ns.kb_pp_pwscf_fragment_4 ns.wf_fragments_1_1 ns.wf_fragments_6_1
ns.kb_pp_pwscf ns.kb_pp_pwscf_fragment_5 ns.wf_fragments_2_1 ns.wf_fragments_7_1
  ns.kb_pp_pwscf_fragment_1 ns.kb_pp_pwscf_fragment_6 ns.wf_fragments_3_1
$ ls ./2D
ndb.BS_Q1_CPU_0 ndb.dip_iR_and_P ndb.dip_iR_and_P_fragment_6 ndb.pp_fragment_4
ndb.BS_diago_Q01 ndb.dip_iR_and_P_fragment_1 ndb.dip_iR_and_P_fragment_7 ndb.pp_fragment_5
ndb.HF_and_locXC ndb.dip_iR_and_P_fragment_2 ndb.pp ndb.pp_fragment_6
ndb.QP ndb.dip_iR_and_P_fragment_3 ndb.pp_fragment_1 ndb.pp_fragment_7
ndb.RIM ndb.dip_iR_and_P_fragment_4 ndb.pp_fragment_2
ndb.cutoff ndb.dip_iR_and_P_fragment_5 ndb.pp_fragment_3


==Sorting the excitonic eigenvalues==
==Sorting the excitonic eigenvalues==

Revision as of 14:25, 30 March 2017

In this tutorial you will learn (for a 2D-hBN) how to:

  • How to analyze a BSE optical spectrum in terms of excitonic eigenvectors and eigenvalues
  • How to plot the excitonic wavefunction

Prerequisites

Previous modules

You will need:

  • ypp executable
  • xcrysden executable
  • gnuplot or xmgrace executable

YAMBO calculations

If you have completed the tutorials of 2D hBN you should have all the databases required to do this tutorial in your SAVE and 2D directories

$ ls ./SAVE
ndb.gops ndb.kindx ns.db1  ns.kb_pp_pwscf_fragment_1....

Sorting the excitonic eigenvalues

$ ypp -e -s -J 2D 

The new generated file o-2D.exc_E_sorted (o-2D.exc_E_sorted) reports the energies of the excitons and their Dipole Oscillator Strenghts sorted by energy (Index).

Strengh.png

Open the first file and look inside. The first exciton is at 4.83 eV and the second one has the highest strenght (normalized to 1) Attention: clearly the convergence of these results has to be checked doing several BSE calculations with different k-grids!

Or you can make a plot

$ gnuplot
gnuplot> plot 'o-2D.eps_q1_diago_bse' w l title 'BSE2D' ,'o-2D.exc_E_sorted' u 1:($2*10) title 'Strenght2D'
Spectrum-strenght.png

Analyze the excitons

We can now analyze the excitons in terms of single-particle states to do that create the appropriate input

$ ypp -e a -F ypp.AMPL.in -J 2D

To analyze the first 5 excitons change this line as:

States= "1 - 5"              # Index of the BS state(s)

Close the input and run ypp

$ ypp -J 2D -F ypp_AMPL.in
$ls ls o*exc*at*
o-2D.exc_amplitude_at_1	o-2D.exc_amplitude_at_3	o-2D.exc_amplitude_at_5	o-2D.exc_weights_at_2	o-2D.exc_weights_at_4
o-2D.exc_amplitude_at_2	o-2D.exc_amplitude_at_4	o-2D.exc_weights_at_1	o-2D.exc_weights_at_3	o-2D.exc_weights_at_5

Open the files for the first exciton o-2D.exc_weights_at_1 reports the Weights, while o-2D.exc_weights_at_1 the amplitudes

where given the exciton Lambda.gif in terms of e,h states, the weights are Weights.gif while the amplitudes are defined as Ampl.gif

weights [math]\displaystyle{ |\Lambda_{eh}^\lambda|^2 }[/math] where

Lambda.gif Weights.gif Ampl.gif

Lambda.gif Weights.gif  Ampl.gif