How to analyse excitons: Difference between revisions
No edit summary |
No edit summary |
||
Line 72: | Line 72: | ||
weights <math>|\Lambda_{eh}^\lambda|^2</math> | weights <math>|\Lambda_{eh}^\lambda|^2</math> | ||
where | |||
[[File:Lambda.gif|x60px|]] [[File:weights.gif|x30px|]] [[File:Ampl.gif|x60px|]] | |||
[[File:Lambda.gif|x60px|]] [[File:weights.gif|x30px|]] [[File:Ampl.gif|x60px|]] |
Revision as of 14:20, 30 March 2017
In this tutorial you will learn (for a 2D-hBN) how to:
- How to analyze a BSE optical spectrum in terms of excitonic eigenvectors and eigenvalues
- How to plot the excitonic wavefunction
Prerequisites
Previous modules
- You must have completed the tutorial on 2D hBN.
- You must have completed the tutorial on 2D hBN.
You will need:
ypp
executablexcrysden
executablegnuplot or xmgrace
executable
YAMBO calculations
If you have completed the tutorials of 2D hBN you should have all the databases required to do this tutorial in your SAVE and 2D directories
$ ls ./SAVE ndb.gops ns.kb_pp_pwscf_fragment_2 ns.kb_pp_pwscf_fragment_7 ns.wf_fragments_4_1 ndb.kindx ns.kb_pp_pwscf_fragment_3 ns.wf ns.wf_fragments_5_1 ns.db1 ns.kb_pp_pwscf_fragment_4 ns.wf_fragments_1_1 ns.wf_fragments_6_1 ns.kb_pp_pwscf ns.kb_pp_pwscf_fragment_5 ns.wf_fragments_2_1 ns.wf_fragments_7_1 ns.kb_pp_pwscf_fragment_1 ns.kb_pp_pwscf_fragment_6 ns.wf_fragments_3_1 $ ls ./2D ndb.BS_Q1_CPU_0 ndb.dip_iR_and_P ndb.dip_iR_and_P_fragment_6 ndb.pp_fragment_4 ndb.BS_diago_Q01 ndb.dip_iR_and_P_fragment_1 ndb.dip_iR_and_P_fragment_7 ndb.pp_fragment_5 ndb.HF_and_locXC ndb.dip_iR_and_P_fragment_2 ndb.pp ndb.pp_fragment_6 ndb.QP ndb.dip_iR_and_P_fragment_3 ndb.pp_fragment_1 ndb.pp_fragment_7 ndb.RIM ndb.dip_iR_and_P_fragment_4 ndb.pp_fragment_2 ndb.cutoff ndb.dip_iR_and_P_fragment_5 ndb.pp_fragment_3
Sorting the excitonic eigenvalues
$ ypp -e -s -J 2D
The new generated file o-2D.exc_E_sorted (o-2D.exc_E_sorted) reports the energies of the excitons and their Dipole Oscillator Strenghts sorted by energy (Index).
Open the first file and look inside. The first exciton is at 4.83 eV and the second one has the highest strenght (normalized to 1) Attention: clearly the convergence of these results has to be checked doing several BSE calculations with different k-grids!
Or you can make a plot
$ gnuplot gnuplot> plot 'o-2D.eps_q1_diago_bse' w l title 'BSE2D' ,'o-2D.exc_E_sorted' u 1:($2*10) title 'Strenght2D'
Analyze the excitons
We can now analyze the excitons in terms of single-particle states to do that create the appropriate input
$ ypp -e a -F ypp.AMPL.in -J 2D
To analyze the first 5 excitons change this line as:
States= "1 - 5" # Index of the BS state(s)
Close the input and run ypp
$ ypp -J 2D -F ypp_AMPL.in
$ls ls o*exc*at* o-2D.exc_amplitude_at_1 o-2D.exc_amplitude_at_3 o-2D.exc_amplitude_at_5 o-2D.exc_weights_at_2 o-2D.exc_weights_at_4 o-2D.exc_amplitude_at_2 o-2D.exc_amplitude_at_4 o-2D.exc_weights_at_1 o-2D.exc_weights_at_3 o-2D.exc_weights_at_5
Open the files for the first exciton o-2D.exc_weights_at_1 reports the Weights, while o-2D.exc_weights_at_1 the amplitudes
where given the exciton in terms of e,h states, the weights are while the amplitudes are defined as
weights [math]\displaystyle{ |\Lambda_{eh}^\lambda|^2 }[/math] where