Install Yambo on Ubuntu/LinuxMint with NVfortran compiler: Difference between revisions

From The Yambo Project
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(13 intermediate revisions by 2 users not shown)
Line 3: Line 3:
[https://developer.nvidia.com/hpc-sdk-downloads NVIDIA HPC Software Development Kit (SDK) ] <br>
[https://developer.nvidia.com/hpc-sdk-downloads NVIDIA HPC Software Development Kit (SDK) ] <br>
On Ubuntu, it can be easely installed via the following procedure
On Ubuntu, it can be easely installed via the following procedure
sudo apt-get update -y && sudo apt-get upgrade -y
sudo apt-get install -y build-essential automake autoconf libtool zlib1g-dev curl gpg wget git tar cmake
  curl https://developer.download.nvidia.com/hpc-sdk/ubuntu/DEB-GPG-KEY-NVIDIA-HPC-SDK | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-hpcsdk-archive-keyring.gpg
  curl https://developer.download.nvidia.com/hpc-sdk/ubuntu/DEB-GPG-KEY-NVIDIA-HPC-SDK | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-hpcsdk-archive-keyring.gpg
  echo 'deb [signed-by=/usr/share/keyrings/nvidia-hpcsdk-archive-keyring.gpg] https://developer.download.nvidia.com/hpc-sdk/ubuntu/amd64 /' | sudo tee /etc/apt/sources.list.d/nvhpc.list
  echo 'deb [signed-by=/usr/share/keyrings/nvidia-hpcsdk-archive-keyring.gpg] https://developer.download.nvidia.com/hpc-sdk/ubuntu/amd64 /' | sudo tee /etc/apt/sources.list.d/nvhpc.list
  sudo apt-get update -y
  sudo apt-get update -y && sudo apt-get install -y nvhpc-25-1
sudo apt-get install -y nvhpc-25-1  


Once you downloaded and installed the NVIDIA compiler do not forget to set the correct PATH and LD_LIBRARY_PATH variables. <br>
'''Setup NVIDIA compilers '''
For example in the bash shell you should set:
NVARCH=`uname -s`_`uname -m`; export NVARCH
NVCOMPILERS=/opt/nvidia/hpc_sdk; export NVCOMPILERS
MANPATH=$MANPATH:$NVCOMPILERS/$NVARCH/25.1/compilers/man; export MANPATH
PATH=$NVCOMPILERS/$NVARCH/25.1/compilers/bin:$PATH; export PATH


'''Configure the parallel environment'''<br>
Once you downloaded and installed the NVIDIA SDK it is suggested avoiding manually setting environment variables for compilers and MPI wrappers. The safest approach is to use the module files provided by Nvidia, located at: `/opt/nvidia/hpc_sdk/modulefiles`


Download OpenMPI version 4.1.7 (version 5.0 has problem with NVfortran) [https://www.open-mpi.org/software/ompi/v4.1/ openMPI 4.1.7].
Before using module files, you need to install the module management tool:
Then configure it with the command:
 
  ./configure --prefix=somewhere CC=nvc CXX=nvc++ FC=nvfortran CFLAGS=-fPIC CXXFLAGS=-fPIC FCFLAGS=-fPIC FCFLAGS="-Mstandard -fPIC" CFLAGS=-fPIC CXXFLAGS=-fPIC
sudo apt-get install environment-modules
and compile it. If you have cuda you can add the support to openMPI adding the flag <code>--with-cuda=</code> see help for more info.
echo "source /etc/profile.d/modules.sh" >> ~/.bashrc
echo "module use /opt/nvidia/hpc_sdk/modulefiles" >> ~/.bashrc
  source ~/.bashrc
 
The commands above only need to be used the first time. Now, you can load the Nvidia SDK module, which will correctly set up all environment variables for both compilers and MPI:
 
module load nvhpc/25.1


'''Configure Yambo with NVfortran and openMPI '''
'''Configure Yambo with NVfortran and openMPI '''
Line 27: Line 28:
Then you can configure Yambo with the command:
Then you can configure Yambo with the command:


./configure MPIFC=mpif90 FC=nvfortran F77=nvfortran CPP="cpp -E"  FPP="nvfortran -Mpreprocess -E" PFC=mpif90 F90SUFFIX=".f90" \
./configure MPIFC=mpif90 MPICC=mpicc FC=nvfortran F77=nvfortran CPP="cpp -E"  FPP="nvfortran -Mpreprocess -E" F90SUFFIX=".f90" \
  --enable-memory-profile  --enable-open-mp --enable-par-linalg  --enable-hdf5-par-io  \
  --enable-memory-profile  --enable-open-mp --enable-par-linalg  --enable-hdf5-par-io  --enable-slepc-linalg  
--with-scalapack-libs=mkl --with-blacs-libs=mkl --enable-slepc-linalg  


If you have an installed CUDA GPU on your machine you can compile Yambo to use it, by adding the flag
If you have an installed CUDA GPU on your machine you can compile Yambo to use it, by adding the flag
  <span style="color:#0000FF">''--enable-cuda-fortran</span> and then specify your GPU architecture and the location
  <span style="color:#0000FF">''--enable-cuda-fortran</span>  
of the cuda libraries, look at configure help for more info.
and then specify your GPU architecture and the CUDA runtime version, look at configure help for more info.


'''Check that your Nvidia graphic card is properly installed'''
'''Check that your Nvidia graphic card is properly installed'''
Line 51: Line 51:
  |                                        |                        |                  N/A |
  |                                        |                        |                  N/A |
  +-----------------------------------------+------------------------+----------------------+
  +-----------------------------------------+------------------------+----------------------+
''CUDA Version: V.S'' should be greater or equal to what you set in your ''cuda-version'' in the configure. In this case we are running with driver 560, which supports up to cuda version 12.6
''CUDA Version: V.S'' should be lower or equal to what you set in your ''cuda-runtime'' in the configure. In this case we are running with driver 560, which supports cuda version 12.6 or newer via the CUDA Forward Compatibility Package (see [https://docs.nvidia.com/deploy/cuda-compatibility/ https://docs.nvidia.com/deploy/cuda-compatibility/]).


More info on Yambo on NVIDIA graphic cards can be found here: [https://www.nvidia.com/en-us/on-demand/session/gtcspring21-e32448/ Materials Design Toward the Exascale: Porting Electronic Structure Community Codes to GPUs]
More info on Yambo on NVIDIA graphic cards can be found here: [https://www.nvidia.com/en-us/on-demand/session/gtcspring21-e32448/ Materials Design Toward the Exascale: Porting Electronic Structure Community Codes to GPUs]
<span style="color:#ff0000">Note 1</span>: cc20 and cc30 are not support anymore in the last version of the nvidia compiler<br>
<span style="color:#ff0000">Note 2</span>: if you want to use a CUDA graphic card you need to compile openmpi or mpich with the cuda support

Latest revision as of 09:50, 11 March 2025

The NVIDIA compiler are freely available on Linux machines. You can download Fortran,C, C++ compiler and debugger from: NVIDIA HPC Software Development Kit (SDK)
On Ubuntu, it can be easely installed via the following procedure

sudo apt-get update -y && sudo apt-get upgrade -y
sudo apt-get install -y build-essential automake autoconf libtool zlib1g-dev curl gpg wget git tar cmake
curl https://developer.download.nvidia.com/hpc-sdk/ubuntu/DEB-GPG-KEY-NVIDIA-HPC-SDK | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-hpcsdk-archive-keyring.gpg
echo 'deb [signed-by=/usr/share/keyrings/nvidia-hpcsdk-archive-keyring.gpg] https://developer.download.nvidia.com/hpc-sdk/ubuntu/amd64 /' | sudo tee /etc/apt/sources.list.d/nvhpc.list
sudo apt-get update -y && sudo apt-get install -y nvhpc-25-1

Setup NVIDIA compilers

Once you downloaded and installed the NVIDIA SDK it is suggested avoiding manually setting environment variables for compilers and MPI wrappers. The safest approach is to use the module files provided by Nvidia, located at: `/opt/nvidia/hpc_sdk/modulefiles`

Before using module files, you need to install the module management tool:

sudo apt-get install environment-modules
echo "source /etc/profile.d/modules.sh" >> ~/.bashrc
echo "module use /opt/nvidia/hpc_sdk/modulefiles" >> ~/.bashrc
source ~/.bashrc

The commands above only need to be used the first time. Now, you can load the Nvidia SDK module, which will correctly set up all environment variables for both compilers and MPI:

module load nvhpc/25.1

Configure Yambo with NVfortran and openMPI

Then you can configure Yambo with the command:

./configure MPIFC=mpif90 MPICC=mpicc FC=nvfortran F77=nvfortran CPP="cpp -E"  FPP="nvfortran -Mpreprocess -E" F90SUFFIX=".f90" \
--enable-memory-profile  --enable-open-mp --enable-par-linalg  --enable-hdf5-par-io  --enable-slepc-linalg 

If you have an installed CUDA GPU on your machine you can compile Yambo to use it, by adding the flag

--enable-cuda-fortran 

and then specify your GPU architecture and the CUDA runtime version, look at configure help for more info.

Check that your Nvidia graphic card is properly installed

To be sure that the code will run fine on your GPU card, you need the proper driver installed on your machine. If you have the nvidia drivers, just run

$nvidia-smi
Mon Sep  9 16:20:02 2024       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 560.35.03              Driver Version: 560.35.03      CUDA Version: 12.6     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce GTX 1650        Off |   00000000:01:00.0  On |                  N/A |
| 20%   39C    P8              8W /   75W |     280MiB /   4096MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

CUDA Version: V.S should be lower or equal to what you set in your cuda-runtime in the configure. In this case we are running with driver 560, which supports cuda version 12.6 or newer via the CUDA Forward Compatibility Package (see https://docs.nvidia.com/deploy/cuda-compatibility/).

More info on Yambo on NVIDIA graphic cards can be found here: Materials Design Toward the Exascale: Porting Electronic Structure Community Codes to GPUs