Angular dependence of non-linear response: Difference between revisions
Line 63: | Line 63: | ||
where we put an arrow to the frequency where we want to study the angula dependence of the SHG. Notice that this specrum is not a converged one due to the small k-point grid and the reduced number of bands. | where we put an arrow to the frequency where we want to study the angula dependence of the SHG. Notice that this specrum is not a converged one due to the small k-point grid and the reduced number of bands. | ||
== Run SHG at different angles == | == Run SHG at different angles == | ||
Using the same command <code> yambo_nl -u n</code> to generate the input at different angles: |
Revision as of 13:47, 23 January 2024
In this tutorial we show how to calculate angular dependence of non-linear response using Yambo. (This tutorial requires Yambo >= 5.3)
We consider as example a monolayer hBN, DFT input files can be downloaded here: hBN-2D-RT.tar.gz
In this tutorial we suppose you already know how to calculate non-linear reponse with Yambo,
if this is not the case please have a look to the tutorials: Non linear response
Run DFT calculation, import the wave-function and run the setup. Then
Remove symmetries
We remove all symmetries Using the command ypp_nl -y
fixsyms
# [R] Remove symmetries not consistent with an external perturbation
% Efield1
0.000000 | 0.000000 | 0.000000 | # First external Electric Field
%
% Efield2
0.000000 | 0.000000 | 0.000000 | # Additional external Electric Field
%
BField= 0.000000 T # [MAG] Magnetic field modulus
Bpsi= 0.000000 deg # [MAG] Magnetic field psi angle [degree]
Btheta= 0.000000 deg # [MAG] Magnetic field theta angle [degree]
RmAllSymm # Remove Time Reversal
notice that in principle one could remove only the symmetries of the rotation plane plus the TimeReversal.
Then go in the FixSymm folder and run the setup again
Run a standard SHG calculation
We first run a SHG calculation using the input
nloptics # [R] Non-linear spectroscopy % NLBands 3 | 6 | # [NL] Bands range % NLverbosity= "high" # [NL] Verbosity level (low | high) NLtime=-1.000000 fs # [NL] Simulation Time NLintegrator= "INVINT" # [NL] Integrator ("EULEREXP/RK2/RK4/RK2EXP/HEUN/INVINT/CRANKNIC") NLCorrelation= "IPA" # [NL] Correlation ("IPA/HARTREE/TDDFT/LRC/LRW/JGM/SEX") NLLrcAlpha= 0.000000 # [NL] Long Range Correction % NLEnRange 1.000000 |6.000000 | eV # [NL] Energy range % NLEnSteps= 160 # [NL] Energy steps NLDamping= 0.200000 eV # [NL] Damping (or dephasing) RADLifeTime=-1.000000 fs # [RT] Radiative life-time (if negative Yambo sets it equal to Phase_LifeTime in NL) % Field1_Freq 0.100000 | 0.100000 | eV # [RT Field1] Frequency % Field1_NFreqs= 1 # [RT Field1] Frequency Field1_Int= 1000.00 kWLm2 # [RT Field1] Intensity Field1_Width= 0.000000 fs # [RT Field1] Width Field1_kind= "SOFTSIN" # [RT Field1] Kind(SIN|COS|RES|ANTIRES|GAUSS|DELTA|QSSIN) Field1_pol= "linear" # [RT Field1] Pol(linear|circular) % Field1_Dir 0.000000 | 1.000000 | 0.000000 | # [RT Field1] Versor % Field1_Tstart= 0.010000 fs # [RT Field1] Initial Time
from this run we get the X2yyy(ω) spectrum:
where we put an arrow to the frequency where we want to study the angula dependence of the SHG. Notice that this specrum is not a converged one due to the small k-point grid and the reduced number of bands.
Run SHG at different angles
Using the same command yambo_nl -u n
to generate the input at different angles: