Truncated Coulomb Potential in 2D: Difference between revisions

From The Yambo Project
Jump to navigation Jump to search
Line 13: Line 13:
Change the variables inside as:
Change the variables inside as:


RandQpts= 1000000          # [RIM] Number of random q-points in the BZ
RandQpts= 1000000          # [RIM] Number of random q-points in the BZ
RandGvec= 100        RL    # [RIM] Coulomb interaction RS components
 
CUTGeo= "box z"            # [CUT] Coulomb Cutoff geometry: box/cylinder/sphere X/Y/Z/XY..
RandGvec= 100        RL    # [RIM] Coulomb interaction RS components
% CUTBox
CUTGeo= "box z"            # [CUT] Coulomb Cutoff geometry: box/cylinder/sphere X/Y/Z/XY..
0.00    | 0.00    | 32.0    |        # [CUT] [au] Box sides
% CUTBox
  0.00    | 0.00    | 32.0    |        # [CUT] [au] Box sides





Revision as of 10:08, 16 March 2017

Generation of a truncated Coulomb Potential for a 2D material

To simulate a real isolated 2D-layer convergence with vacuum size should be required. The use of a truncated Coulomb potential allows to achieve faster convergence in the vacuum size, eliminating the interaction between the repeated images. (see ref. Varsano) For a 2D system a box-like cutoff in the direction perperdicular to the sheet (in this case z) is applied. The used box size L_z = a_z (cell size in bohr) - 1 bohr = 32 bohr

Create the input file:

$ yambo -F 01_wcut.in  -r

Open the input file 01_cutoff.in

Change the variables inside as:

RandQpts= 1000000          # [RIM] Number of random q-points in the BZ
RandGvec= 100        RL    # [RIM] Coulomb interaction RS components
CUTGeo= "box z"            # [CUT] Coulomb Cutoff geometry: box/cylinder/sphere X/Y/Z/XY..
% CUTBox
 0.00     | 0.00     | 32.0    |        # [CUT] [au] Box sides


Note that the L_z Close the input file and run yambo

$ yambo -F 01_wcut.in