Many-Body Perturbation theory: Basic concepts and approximations

Andrea Marini

October 21, Barranquilla, Colombia

www.yambo-code.eu

Ultrafast Science Laboratory of the Material Science Institute National Research Council (Monterotondo Stazione, Italy)

http://www.yambo-code.eu/andrea

Different physics, different approaches

Different physics, different approaches

The Many-Body problem

The Many-Body Problem: a micro-macro connection

Many-Body Perturbation Theory for dummies

Feynman diagrams for dummies

The "zoo" of MBPT approximations

Many-Body Perturbation Theory for dummies

 $H\approx\sum_{i}h(x_{i})$

The Many-Body problem

The Many-Body problem: I particle approx

 $\langle N_0 | \hat{H} | N_0 \rangle = \sum_{n \in filled} \epsilon_n$

Feynmann diagrams for dummies

The time-dependent, interacting density (Kubo)

The time-dependent, interacting density

Green's Functions

$$\left\langle \Psi(t) \left| \hat{d}^{\dagger}_{\mathbf{k}} \hat{U}(t) \hat{U}^{\dagger}(t) \hat{d}^{\dagger}_{\mathbf{k}'} \right| \Psi(t)
ight
angle =$$

The Dyson equation

Green's Functions: Kubo revisited

Basic MBPT process is screening trough the excitation of electron-hole (neutral) pairs

The very same process can be easily described by using a diagrammatic representation

MBPT is (by far) more powerful when we move to more complicated interaction potentials

The "zoo" of MBPT approximations

Feynman diagrams in the fully interacting case $\left\langle \Psi(t) \left| \hat{d}_{\mathbf{k}}^{\dagger} \hat{U}(t) \hat{U}^{\dagger}(t) \hat{d}_{\mathbf{k}'}^{\dagger} \right| \Psi(t) \right\rangle =$

Feynman diagrams in the fully interacting case

W/Z W/Z~~Z ~z ~~7

Use Physical arguments to choose specific classes of diagrams !!!

Nucleons in nucleus

in atom

Electrons

in metal

Molecules

in liquid

The T-matrix approximation

High Density

wham!

Low Density

VIKTOR MIKHAĬLOVICH GALITSKIĬ (1924–1981)

Take-home messages

MBPT is an exact excited state theory

MBPT is based on Quantum Mechanics and can take into fully account *non-local processes (spatially and temporally)*

From the MBPT perspective **DFT is a mean-field approximation**

The price to pay is a theory: whose *complexity grows* exponentially with the perturbative order, based on the delicate assumption of validity of the perturbative expansion, bound to use well documented, but also rigid, approximations.

References

QUANTUM THEORY OF MANY-PARTICLE SYSTEMS

ALEXANDER L. FETTER JOHN DIRK WALECKA

Richard D. Mattuck

A Guide to Feynman Diagrams in the Many-Body Problem

Second Edition

References

aMbowiki	Selected Readings
	Contents [hide]
Edu Home	1 General Theory
WWW Home	2 Many-body Theory
Tutorials	3 The GW method
download	4 Density Functional Theory
Install	5 TDDFT
Virtual Machines (Cloud, docker, VBox)	6 Non-equilibrium Green's function

Page

Developers Corner

Read!

Theory Lectures Cheatsheets Selected Readings Thesis

Learn! (Modular Tutorials)

Overview

Files Download

First steps

GW basics

Search The Yambo Prc Q Discussion View history View source Read S

- 7 Theoretical Spectroscopy
- 8 Computer Programming

General Theory

- Theoretical spectroscopy □, M. Gatti
- Energy Loss Spectroscopy D, F. Sottile

Many-body Theory

- PhD lectures: MBPT and Yambo ☑, L. Chiodo et al.
- Introduction to Many Body Physics D, Piers Coleman
- Pedagogical introduction to equilibrium Green's functions: condensed matter examples with

wiki.yambo-code.eu