Many-Body Perturbation theory: Basic concepts and approximations

Andrea Marini

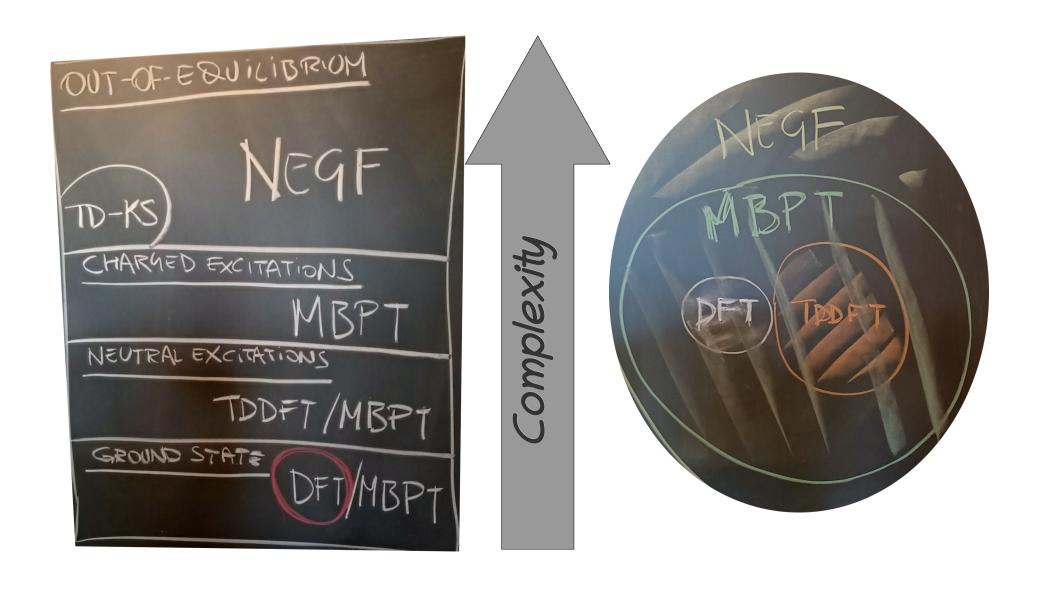
October 21, Barranquilla, Colombia

www.yambo-code.eu

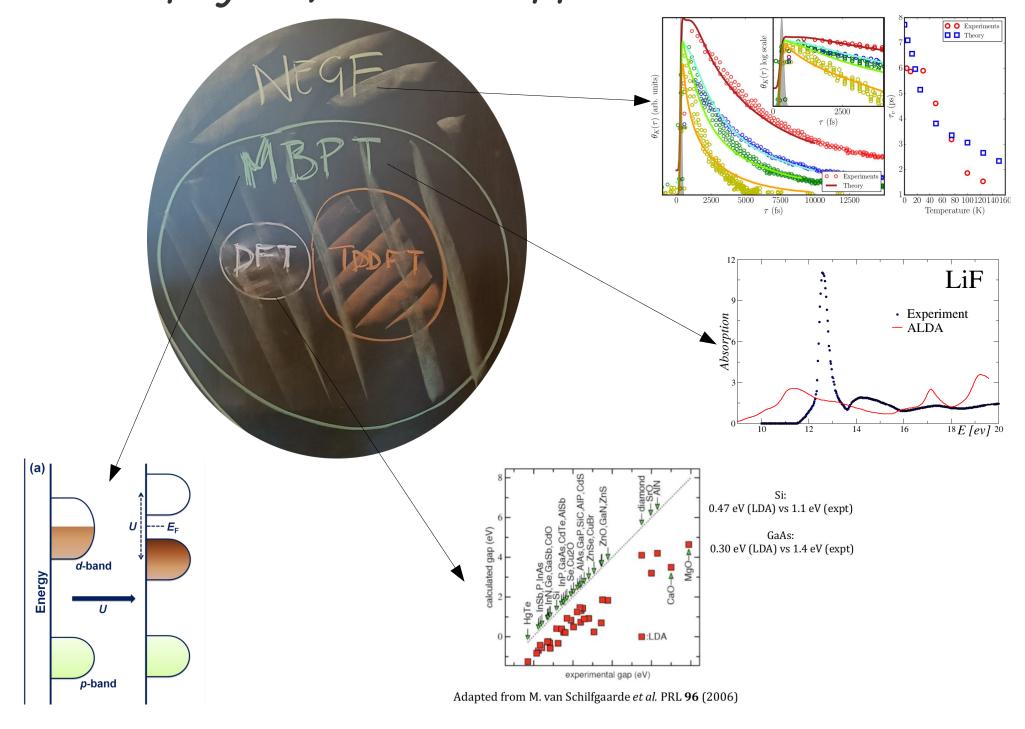
Ultrafast Science Laboratory of the Material Science Institute National Research Council (Monterotondo Stazione, Italy)

http://www.yambo-code.eu/andrea

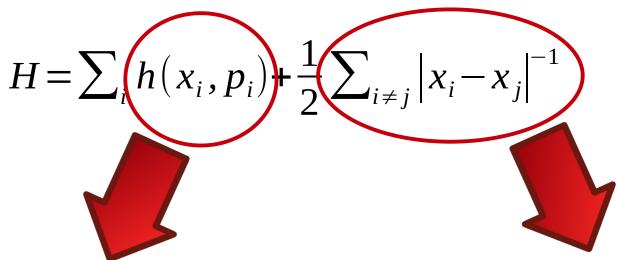
Different physics, different approaches



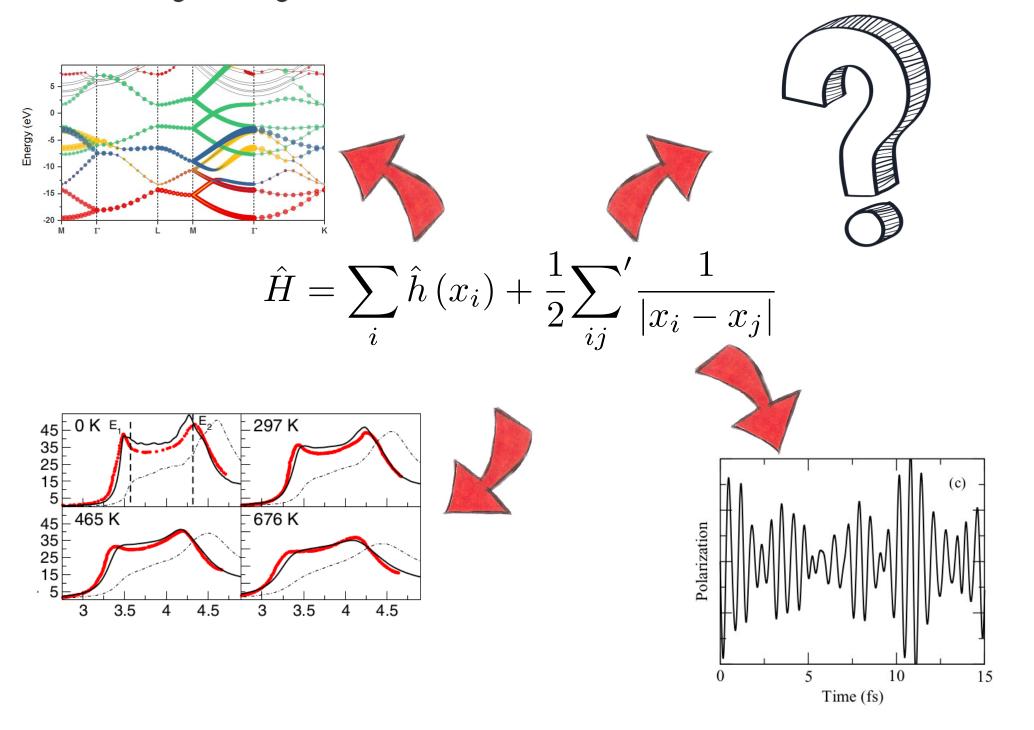
Different physics, different approaches



The Many-Body problem



The Many-Body Problem: a micro-macro connection

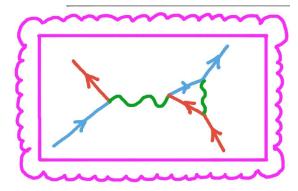


A (very) hard job!

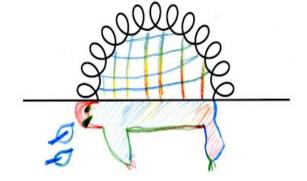
$$\langle N|=\overline{(|N\rangle)}$$
 $A=\langle N|\hat{A}|N\rangle$
 $|N(t)\rangle=U(t,t_0)|N(t_0)\rangle$
 $Diagrams$

Outline

Many-Body Perturbation Theory for dummies



Feynman diagrams for dummies

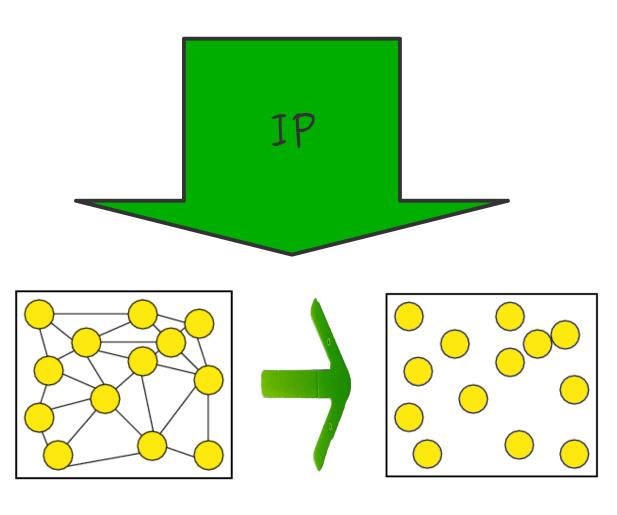


The "zoo" of diagrammatic approximations

Many-Body Perturbation Theory for dummies

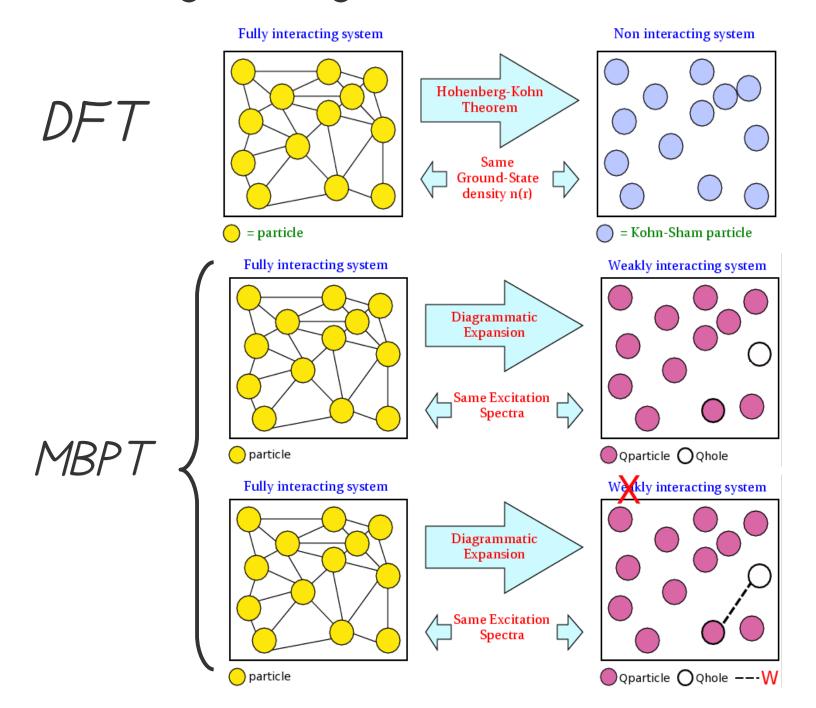
The Many-Body problem

$$H = \sum_{i} h(x_{i}, p_{i}) + \frac{1}{2} \sum_{i \neq j} |x_{i} - x_{j}|^{-1}$$



$$H \approx \sum_{i} h(x_i)$$

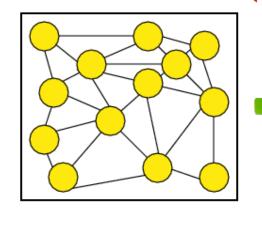
The Many-Body problem

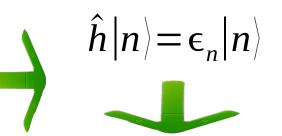


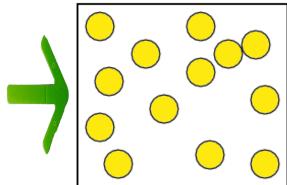
The Many-Body problem: I particle approx

$$H = \sum_{i} h(x_{i}) + \frac{1}{2} \sum_{i \neq i} |x_{i} - x_{j}|^{-1}$$

$$H = \sum_{i} h(x_i)$$





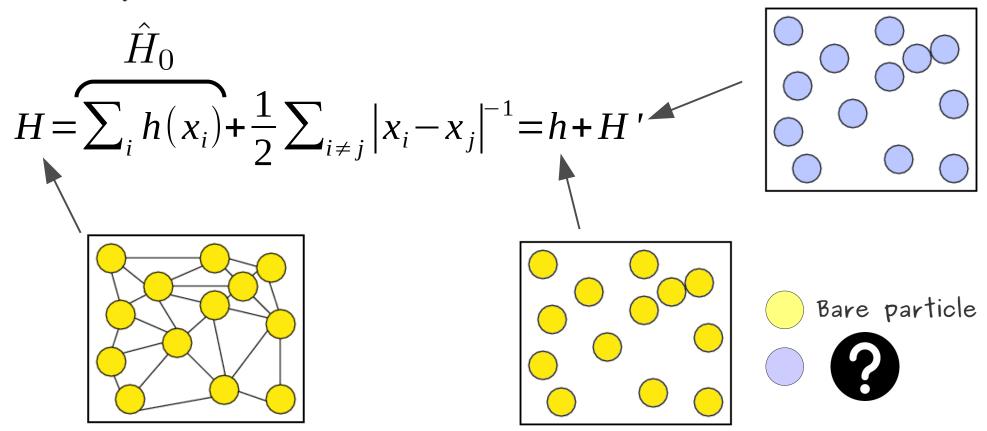


$$|N_0\rangle = \prod_{n \in filled} |n\rangle$$

$$\langle N | \hat{A} | N \rangle \approx F_N [\{A_n\}]$$

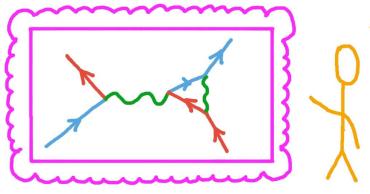
$$\langle N_0 | \hat{H} | N_0 \rangle = \sum_{n \in filled} \epsilon_n$$

Quasiparticles...



The goal of the Many Body methods is to rewrite the fully interacting problem as an as much independent as possible counterpart

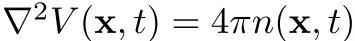
FEYNMAN DIAGRAMS

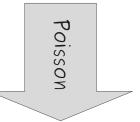


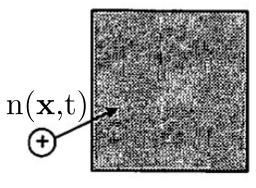
... a beautifully rendered, pictorial representation of the great physicist Richard P. Feynman...

Feynmann diagrams for dummies

The Coulomb interaction







Let's add an external (oscillating) charge in the system

$$V(\mathbf{r},t) = \int d\mathbf{r}' \frac{n(\mathbf{r}',t)}{\mathbf{r} - \mathbf{r}'}$$

$$\hat{\psi}(\mathbf{r}) = \sum_{\mathbf{k}} \phi_{\mathbf{k}}(\mathbf{r}) \hat{d}_{\mathbf{k}}$$

$$\hat{n}(\mathbf{r}) = \hat{\psi}^{\dagger}(\mathbf{r})\hat{\psi}(\mathbf{r})$$

2nd quantization

$$\hat{H}(t) = \hat{H}_0 + \int \hat{n}(\mathbf{r})V(\mathbf{r}, t)$$

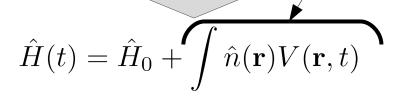
The time-dependent, interacting density (Kubo)

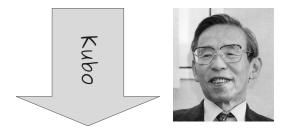
$$n(\mathbf{r},t) = \left\langle \Psi(t) \left| \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \right| \Psi(t) \right\rangle$$

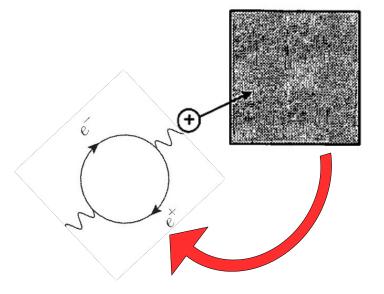
Ground state
$$\Psi(t)=\Psi_0$$

Semi-classical excitation

Density Functional Theory





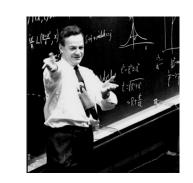


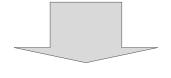
$$n(\mathbf{r},t)=n_0(\mathbf{r})+\int d\mathbf{r}' \int_0^t dt' \chi^R (\mathbf{r}t,\mathbf{r}'t')V(\mathbf{r}',t')$$

$$\chi(\mathbf{r}t, \mathbf{r}'t') = -i \langle \Psi | [\hat{n}(\mathbf{r}, t), \hat{n}(\mathbf{r}', t')] | \Psi \rangle \theta(t - t')$$

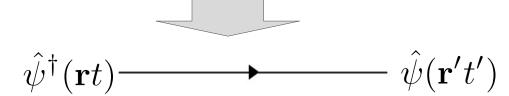
The response (Green's) function

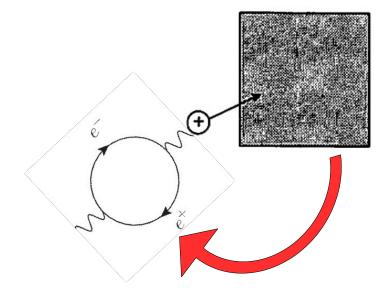
$$n(\mathbf{r},t)=n_0(\mathbf{r})+\int d\mathbf{r}' \int_0^t dt' \chi^R (\mathbf{r}t,\mathbf{r}'t') V(\mathbf{r}',t')$$



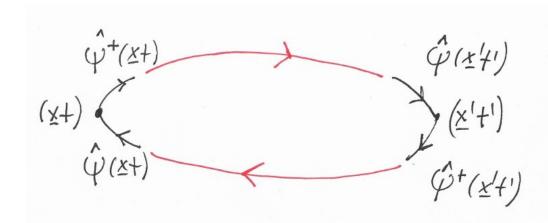


$$\hat{\psi}(\mathbf{r}) = \sum_{\mathbf{k}} \phi_{\mathbf{k}}(\mathbf{r}) \hat{d}_{\mathbf{k}}$$





$$\langle \Psi | [\hat{n}(\mathbf{r},t), \hat{n}(\mathbf{r}',t')] | \Psi \rangle$$



The time-dependent, interacting density

$$n(\mathbf{r},t) = \left\langle \Psi(t) \left| \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \right| \Psi(t) \right\rangle$$

$$|\Psi(t)\rangle = \hat{U}(t,t_0) |\Psi(t_0)\rangle \longrightarrow \hat{U}(t,-\infty) |\Phi\rangle$$

$$-\infty$$
Adiabatic Hypothesis

$$\hat{U}(t) \equiv \hat{U}(t, -\infty)$$

$$n(\mathbf{r}, t) = \sum_{\mathbf{k}\mathbf{k}'} \phi_{\mathbf{k}}^*(\mathbf{r}) \phi_{\mathbf{k}'}(\mathbf{r}) \left\langle \Psi(t) \left| \hat{d}_{\mathbf{k}}^{\dagger} \hat{U}(t) \hat{U}^{\dagger}(t) \hat{d}_{\mathbf{k}'} \right| \Psi(t) \right\rangle$$

 $-\infty$:::::::: \longrightarrow

The evolution operator (scattering potential)

$$\hat{H}(t) = \hat{H}_0 + \hat{V}(t)$$

$$i\frac{d}{dt}\hat{U}_0(t) = \hat{H}_0\hat{U}_0(t)$$

$$\hat{U}(t) = \hat{U}_0(t)\hat{F}(t)$$

$$\hat{F}(t) = 1 - i\int_{-\infty}^t dt_1\hat{V}_I(t_1) + (-i)^2\int_{-\infty}^t dt_1\int_{-\infty}^{t_1} dt_2\hat{V}_I(t_1)\hat{V}_I(t_2) + \dots$$
Constrained time integrals

 $t > t_1 > t_2 > \cdots$

Half the dynamics...

$$\left\langle \Psi(t) \left| \hat{d}_{\mathbf{k}}^{\dagger} \hat{U}(t) \hat{U}^{\dagger}(t) \hat{d}_{\mathbf{k}'} \right| \Psi(t) \right\rangle = \delta_{\mathbf{k} \mathbf{k}'} - \left\langle \Psi(t) \left| \hat{d}_{\mathbf{k}} \hat{U}(t) \hat{U}^{\dagger}(t) \hat{d}_{\mathbf{k}'}^{\dagger} \right| \Psi(t) \right\rangle$$

$$\hat{P}(t)\hat{d}_{\mathbf{k}}^{\dagger} | \Psi(t) \rangle = F^{\dagger}(t)\hat{Q}_{0}^{\dagger}(t)\hat{d}_{\mathbf{k}}^{\dagger} | \Psi(t) \rangle$$

$$\hat{F}(t) = 1 + i \int_{-\infty}^{t} dt_{1}\hat{V}_{I}(t_{1}) + i^{2} \int_{-\infty}^{t} dt_{1} \int_{-\infty}^{t_{1}} dt_{2}\hat{V}_{I}(t_{2})\hat{V}_{I}(t_{1}) + \dots$$

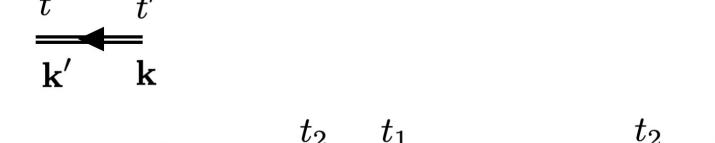
$$-\infty \qquad t + \sum_{\mathbf{k}_{1}} -\infty \qquad k_{1} \qquad k \qquad k \qquad k \qquad k \qquad k \qquad + \dots$$

Green's Functions

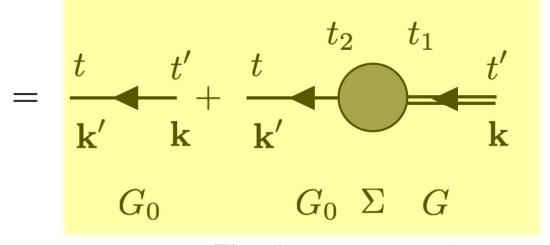
$$\left\langle \Psi(t) \left| \hat{d}^{\dagger}_{\mathbf{k}} \hat{U}(t) \hat{U}^{\dagger}(t) \hat{d}^{\dagger}_{\mathbf{k}'} \right| \Psi(t) \right\rangle =$$

$$= \frac{t}{\mathbf{k}'} + \dots$$

The Dyson equation



$$= \underbrace{\frac{t}{\mathbf{k}'} + \frac{t'}{\mathbf{k}}}_{\mathbf{k}'} + \underbrace{\frac{t_2}{\mathbf{k}'}}_{\mathbf{k}'} + \underbrace{\frac{t_2}{\mathbf{k}'}}_{\mathbf{k}} + \underbrace{\frac{t_2}{\mathbf{k}'}}_{\mathbf{k}'} + \underbrace{\frac{t_2}{\mathbf{k}'}}_{\mathbf{k}'} + \underbrace{\frac{t_3}{\mathbf{k}'}}_{\mathbf{k}'} + \underbrace{\frac{t'}{\mathbf{k}'}}_{\mathbf{k}'} + \underbrace{\frac{t'}{\mathbf{k}'}}_{\mathbf{k}'}$$



The Dyson Equation

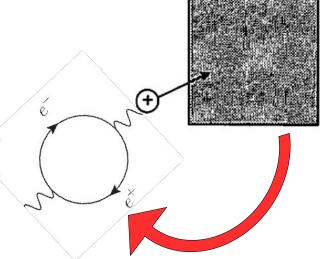
Green's Functions: Kubo revisited

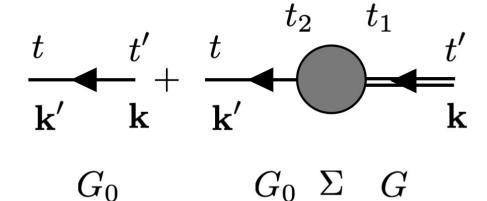
$$\left\langle \Psi(t) \left| \hat{d}_{\mathbf{k}}^{\dagger} \hat{U}(t) \hat{U}^{\dagger}(t) \hat{d}_{\mathbf{k}'}^{\dagger} \right| \Psi(t) \right\rangle =$$

$$= \frac{t}{\mathbf{k}'} \frac{t}{\mathbf{k}} + \frac{t}{\mathbf{k}'} \underbrace{\begin{array}{c} t_1 \\ \mathbf{k}' \end{array}} \underbrace{\begin{array}{c} t_$$

Key messages

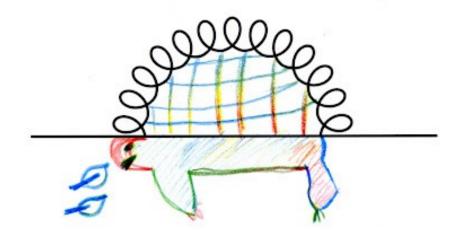
Basic MBPT process is screening trough the excitation of electron-hole (neutral) pairs





The very same process can be easily described by using a diagrammatic representation

MBPT is (by far) more powerful when we move to more complicated interaction potentials

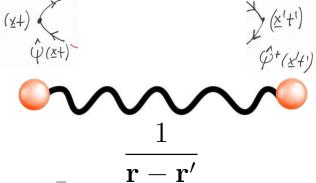


The "zoo" of diagrammatic approximations

The Coulomb interaction (revisited)

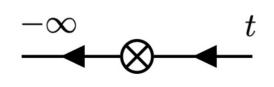
$$V(\mathbf{r},t) = \int d\mathbf{r}' \frac{n(\mathbf{r}',t)}{\mathbf{r} - \mathbf{r}'}$$

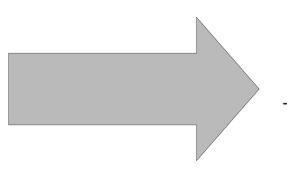
 $\hat{\psi}^{+}(\underline{x}+)$

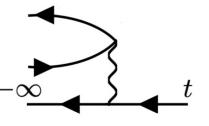


$$\hat{U}(t) = \hat{U}_0(t)\hat{F}(t)$$

$$\hat{F}(t) = 1 - i \int_{-\infty}^{t} dt_1 \hat{V}_I(t_1) + (-i)^2 \int_{-\infty}^{t} dt_1 \int_{-\infty}^{t_1} dt_2 \hat{V}_I(t_1) \hat{V}_I(t_2) + \dots$$

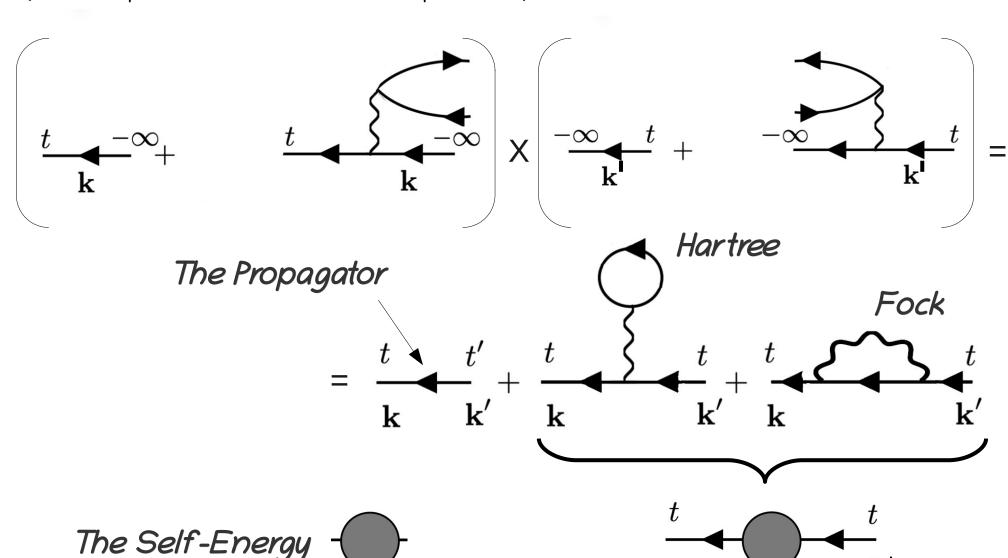




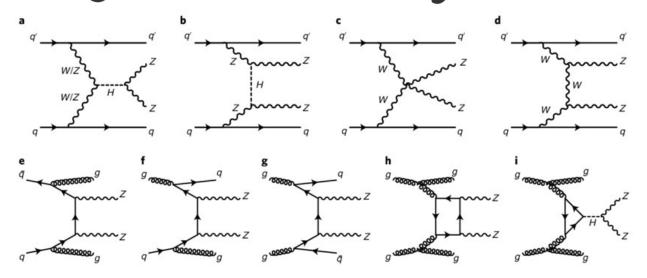


Feynman diagrams in the fully interacting case

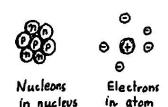
$$\left\langle \Psi(t) \left| \hat{d}_{\mathbf{k}}^{\dagger} \hat{U}(t) \hat{U}^{\dagger}(t) \hat{d}_{\mathbf{k}'}^{\dagger} \right| \Psi(t) \right\rangle = 0$$

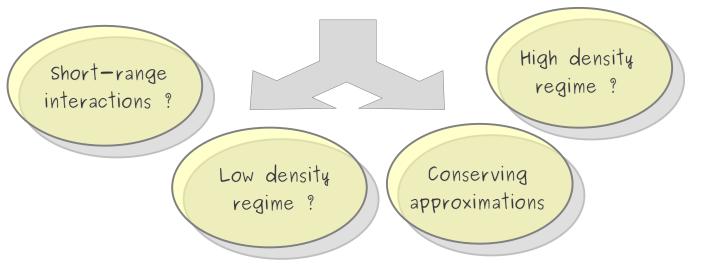


Feynman diagrams in the fully interacting case



Use Physical arguments to choose specific classes of diagrams !!!



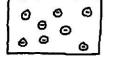


Molecules in liquid

Atoms in molecule

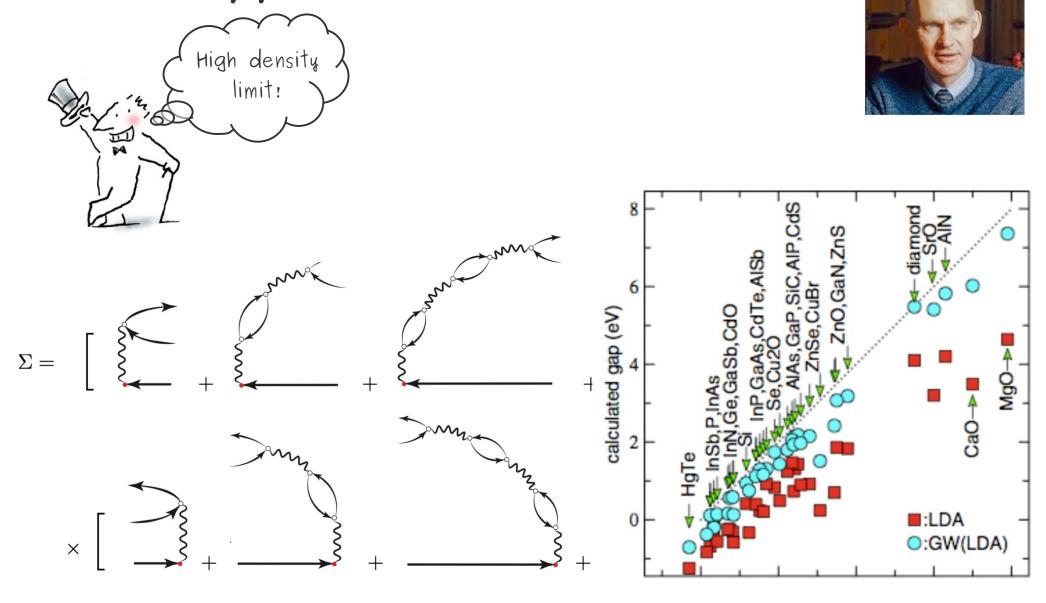


Atoms in solid

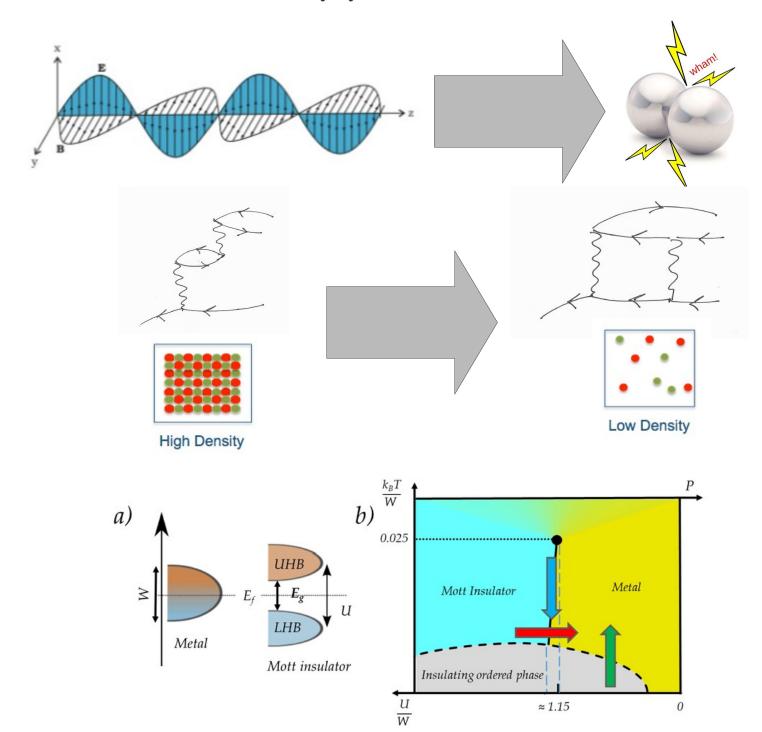


Electrons in metal

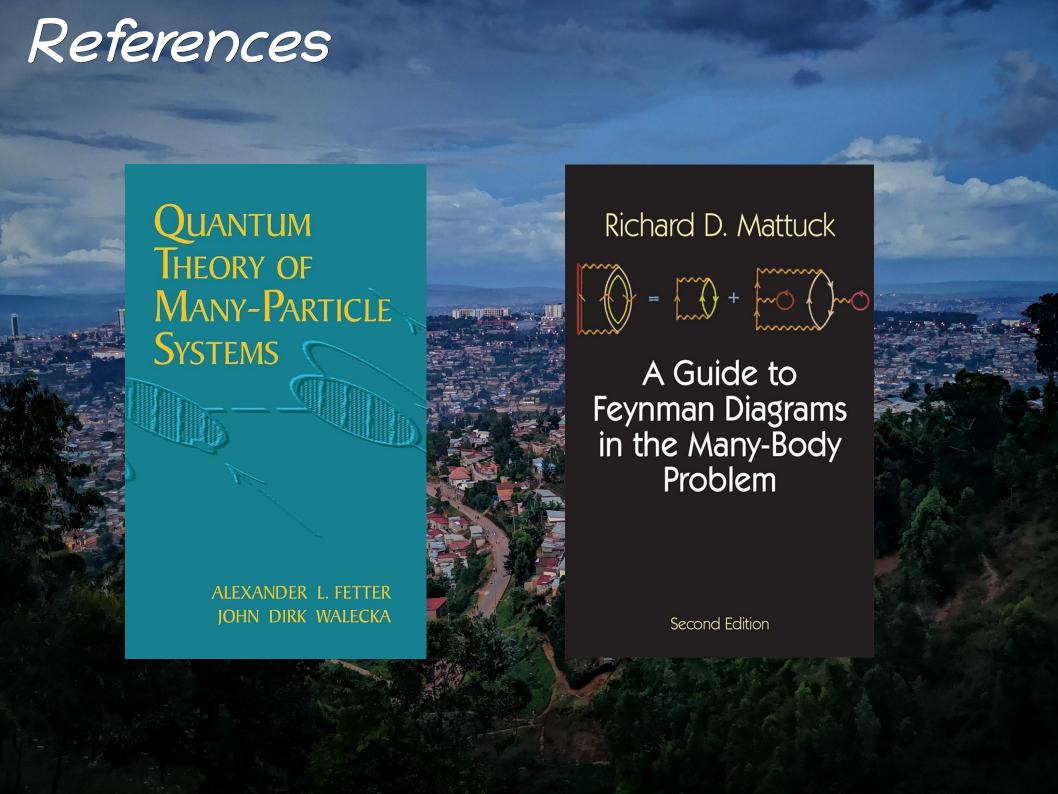
The GW approximation



The T-matrix approximation



VIKTOR MIKHAĬLOVICH GALITSKIĬ (1924-1981)



References

Edu Home

WWW Home

Tutorials

download

Install

Virtual Machines (Cloud, docker, VBox)

Developers Corner

Read!

Theory

Lectures

Cheatsheets

Selected Readings

Thesis

Learn! (Modular Tutorials)

Overview

Files Download

First steps

GW basics

CW in paralla

Page

Discussion

Read

View source

View history

Search The Yambo Prc Q

Selected Readings

Contents [hide]

- 1 General Theory
- 2 Many-body Theory
- 3 The GW method
- 4 Density Functional Theory
- 5 TDDFT
- 6 Non-equilibrium Green's function
- 7 Theoretical Spectroscopy
- 8 Computer Programming

General Theory

- Theoretical spectroscopy □, M. Gatti
- Energy Loss Spectroscopy □, F. Sottile

Many-body Theory

- PhD lectures: MBPT and Yambo 団, L. Chiodo et al.
- Introduction to Many Body Physics D, Piers Coleman
- Pedagogical introduction to equilibrium Green's functions: condensed matter examples with