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Abstract

This Thesis explores the ground-state and many-body properties of low-dimensional materials, fo-
cusing on their unique electronic, optical, and mechanical characteristics. Low-dimensional materi-
als, including two-dimensional systems like graphene, one-dimensional materials such as nanowires,
and zero-dimensional materials such as quantum dots, exhibit quantum confinement effects that
significantly alter their properties compared to bulk materials. The Thesis not only explores the
intrinsic properties of low-dimensional materials but also demonstrates how these properties can
be tailored and controlled for specific applications. For example, the strong light absorption and
excitonic effects observed in tellurene and 1D semiconducting wires suggest their potential use in
high-efficiency solar cells and photodetectors. Moreover, the modulation of second-harmonic gen-
eration in materials like MoS2 and WSe2 by electric fields or charge doping offers new avenues
for developing non-linear optical devices. The comprehensive analysis of zero-dimensional polyyne
rings under electric fields sheds light on their potential for future terahertz technologies.
By employing state-of-the-art computational methods such as the GW approximation and the
Bethe-Salpeter Equation, this work provides a more accurate depiction of quasi-particle and exci-
tonic behaviors, advancing the understanding of many-body interactions in low-dimensional sys-
tems.
The Thesis is divided as follows:

• Chapter 1 introduces the significance of low-dimensional materials, highlighting their clas-
sification into 2D, 1D, and 0D systems. The chapter underscores the importance of under-
standing their excited-state properties, which play a crucial role in their interaction with light,
response to external stimuli, and optoelectronic applications.

• Chapter 2 provides the theoretical background for ground-state properties, discussing the
many-body problem and the Born-Oppenheimer approximation. It introduces density func-
tional theory, explaining the Hohenberg-Kohn theorems and the Kohn-Sham equations, which
simplify the complex many-body problem into a set of single-particle equations. The chapter
also delves into the challenges of DFT, such as the band gap problem and the approximation
of the exchange-correlation functional, as well as its computational implementations.

• Chapter 3 covers the theoretical background for electronic properties, focusing on methods
to study excited states. It introduces photoemission spectroscopy and the Green’s functions
formalism, including the Lehmann representation and Hedin’s equations. The chapter empha-
sizes the GW approximation, which corrects the limitations of DFT in predicting quasi-particle
energies and provides more accurate descriptions of electronic properties in low-dimensional
materials.
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• Chapter 4 examines optical properties, detailing how light interacts with matter in low-
dimensional systems. It discusses the calculation of optical properties using DFT and the
GW approximation, introducing the concept of exciton and the Bethe-Salpeter Equation to
describe the formation and behavior of electron-hole pairs in these systems.

• Chapter 5 presents the results and discussions, exploring the properties of different low-
dimensional materials. For 2D materials, it investigates tellurene polymorphs, highlighting
their potential for solar energy harvesting due to the strong exciton anisotropy and high
optical absorbance. Furthermore, it discusses how second-harmonic generation in MoS2 and
WSe2 can be induced and modulated by the application of an electric field or by charge
doping, exploring the physics behind non-linear optics phenomena. In 1D materials, this thesis
focuses on excitonic effects in semiconducting atomic wires identified through high-throughput
screening of exfoliable bulk systems. For 0D materials, it explores the tunable electric-field-
driven terahertz splitting in the polyyne C18 carbon ring, offering valuable insights into the
excited-state properties of these carbon systems.

• Chapter 6 concludes the thesis, summarizing the contributions to the understanding of
ground-state and excited-state properties in low-dimensional materials.

Keywords: DFT, MBPT, BSE, 2D, 1D, 0D, tellurene, TMD, wire, cyclocarbons, exciton, non-
linear optics
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Chapter 1

Introduction

In recent years, low-dimensional materials have attracted substantial attention due to their unique
electronic, optical, and mechanical properties, drastically different from their bulk counterparts.
These materials exhibit quantum confinement effects that fundamentally alter their behavior, mak-
ing them ideal candidates for applications in emerging technologies such as nanoelectronics, pho-
tonics, energy conversion, and quantum computing.
Low-dimensional materials can be classified on the basis of the number of spatial dimensions in
which electrons are free to move:

• Two-dimensional (2D) materials, such as graphene and other Xenes, hexagonal boron nitride
(h-BN), and transition metal dichalcogenides (TMDs), consist of single or few layers of atoms
and exhibit remarkable properties such as high mobility, tunable band gaps, and large exciton
binding energies.

• One-dimensional (1D) materials, including nanowires and nanotubes, confine electrons along
one axis, resulting in highly anisotropic charge transport and exciton dynamics.

• Zero-dimensional (0D) materials, like quantum dots and carbon nanorings, confine electrons
in all directions, leading to discrete energy levels and strong quantum effects.

One of the most intriguing aspects of low-dimensional materials is their excited-state properties,
which describe how these materials behave when they absorb energy and transition to higher-energy
states. Understanding these properties is crucial because they directly influence how these materials
interact with light, respond to external stimuli, and conduct electricity under non-equilibrium
conditions. Excited states in low-dimensional systems are highly sensitive to environmental factors
such as temperature, strain, and dielectric environment. As a result, they provide a wealth of
information about the intrinsic properties of the material. Although ground-state properties are
often sufficient for understanding equilibrium behaviors, many of the most promising applications of
low-dimensional materials depend on excited states, which provide deeper insights into phenomena
such as electron-hole pair formation, optical absorption, luminescence, and photocatalysis.
The study of excited states is essential for several reasons:

• Fundamental understanding of quantum phenomena: low-dimensional materials ex-
hibit quantum confinement, where the motion of electrons and holes is restricted in one or
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more dimensions. This confinement significantly alters the density of states and leads to pro-
nounced excitonic effects — where bound electron-hole pairs (excitons) play a dominant role
in the material’s optical properties. In 2D materials like TMDs, excitons can have binding
energies an order of magnitude larger than those in bulk semiconductors. Similarly, in 1D
systems like nanowires and 0D systems like quantum dots, excitonic effects are magnified,
making them crucial for both fundamental quantum mechanics and potential applications.

• Optoelectronic applications: many of the potential applications of low-dimensional ma-
terials arise from their excited-state behavior. For example, 2D materials exhibit exceptional
optical absorption and can be engineered for use in photodetectors, light-emitting diodes
(LEDs), and solar cells. The ability to tune optical properties via exciton manipulation, band
gap engineering, and light-matter interaction allows for the development of high-efficiency
devices with customizable characteristics. This makes the understanding of excited states
vital for the design of next-generation optoelectronic devices. Similarly, low-dimensional ma-
terials are considered highly promising candidates for photovoltaics and photocatalysis, owing
to their ability to absorb and convert sunlight into electricity or chemical energy efficiently.
Tunable band gaps, using different means, allow for optimized absorption across different
regions of the solar spectrum, while their strong exciton binding enhances charge separation
and transport. This makes them particularly suitable for solar harvesting and water-splitting
applications.

• Emerging technologies: beyond traditional electronics and photonics, the excited-state
properties of low-dimensional materials are key to realizing advanced technologies such as
quantum computing and spintronics. For example, materials with strong spin-orbit coupling
(SOC), such as topological insulators or monolayers of TMDs, can be used to manipulate
electron spins for information processing at the quantum level. Similarly, single-photon emit-
ters based on excitonic recombination in 0D materials are essential for the development of
quantum light sources for quantum communication.

The focus of this thesis is on leveraging advanced computational techniques, including Density
Functional Theory (DFT) and Many-Body Perturbation Theory (MBPT), to explore the excited-
state properties of these systems. These computational methods, especially post-DFT techniques
like the GW approximation and the Bethe-Salpeter Equation (BSE), are essential for accurately
predicting these features and represent the state-of-the-art in the field of theoretical and computa-
tional condensed matter physics.
In conclusion, the study of excited-state properties in low-dimensional materials is not only a fun-
damental scientific endeavor but also a gateway to numerous applications that will shape the future
of technology. By exploring the intricate behaviors of electrons in these confined systems, this work
aims to contribute to a broader understanding of their potential and provide a foundation for future
innovations and technologies.



Chapter 2

Theoretical Background:
Ground-State Properties

In this chapter, we review the theoretical background of density functional theory (DFT), its lim-
itations, and its practical implementations. While the main results presented in this thesis were
obtained using post-DFT methods, DFT remains the foundation of almost every ab initio calcula-
tion, providing an essential tool for the prediction of the crystal structure and the electronic and
optical properties of materials.

2.1 The Many-Body Problem

The study of systems composed of many interacting particles probably represents the main issue
in the field of condensed matter physics and, in general, in quantum mechanics. Such systems,
consisting, e.g., of electrons and ions, can be described by the following Hamiltonian:

H = Tion + Te + Vee + Ve−ion + Vion−ion (2.1)

where the terms in (2.1) correspond to:

• Tion = −ℏ2

2

∑
I

∇2
RI

MI
, the kinetic energy of the ions;

• Te = − ℏ2

2m

∑
i

∇2
ri , the kinetic energy of the electrons;

• Vee = 1
2

∑
i ̸=j

e2

|ri−rj | , the Coulomb potential due to the electron-electron interactions (repulsive

term);

• Ve−ion = −
∑
i,I

ZIe
2

|RI−ri| , the Coulomb potential due to the electron-ion interactions (attractive

term);
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• Vion−ion = 1
2

∑
I ̸=J

ZIZJe
2

|RI−RJ | , the Coulomb potential due to the ion-ion interactions (repulsive

term).

Here we have considered the most general case in which ions can all possess different masses. Co-
ordinates ri and RI are the sets of spatial coordinates of electrons and nuclei, respectively. For the
sake of simplicity, the spin contributions have been neglected.
Solving the Schrödinger equation associated with Hamiltonian (2.1) would, in principle, allow us
to calculate the wavefunction of the many-body system, thus providing access to all its physical
properties. In theory, this argument holds regardless of the number of interacting particles. How-
ever, in practice, even for a few particles and using robust numerical methods, finding the exact
solution to the many-body Schrödinger equation is a highly complex task. Moreover, when dealing
with systems like molecules or solids, where the number of interacting particles can be on the order
of 1023, solving this problem exactly becomes essentially impossible.
Therefore, we need appropriate approximations that enable us to manipulate and simplify the prob-
lem.

2.2 The Born-Oppenheimer Approximation

The first approximation is motivated by the significant difference in the masses of nuclei and elec-
trons: this disparity, typically ranging from 3 to 5 orders of magnitude, results in the orbital period
of electrons being around 10−17 s, while the characteristic periods of nuclear motion are about
10−13 s. Due to this large difference, it is reasonable to decouple the dynamics of the nuclei from
those of the electrons. This decoupling is conceptually achieved through the so-called adiabatic
principle. In this context, the principle can be summarized as follows: initially, the nuclei are
considered as fixed at selected spatial configurations, and the focus is placed on the behavior of the
electrons as a function of the chosen nuclear coordinates. This approach allows us to determine the
so-called adiabatic potential energy surfaces, as depicted in Fig. 2.1, which represent the potential
energy landscape of the nuclear Hamiltonian. Once these adiabatic surfaces Ei(R) are known as
functions of the nuclear coordinates (collectively denoted by R), the nuclear dynamics can then be
studied.
Born and Oppenheimer demonstrated how to exploit this principle to describe the interdependence
between electronic properties and nuclear dynamics [1]. Consequently, this approach is generally re-
ferred to as the Born-Oppenheimer approximation. As mentioned earlier, this approximation results
in an electronic Hamiltonian with fixed nuclear positions (or, more generally, fixed ion positions):

Heϕm(ri, {RI}) = (Te + Vee + Ve−ion + Vion−ion)ϕm(ri, {RI})

= Em({RI})ϕm(ri, {RI})
(2.2)

where the dependence from RI is only parametric, and a nuclear Hamiltonian:

Hionχs(RI) = [Tion + Es(RI)]χs(RI) = Eχs(RI) (2.3)
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in which the nuclei (or ions) move in the potential Es(R) due to the electrons.

Figure 2.1: Schematic representation of adiabatic potential energy surfaces Ei(R), where the multi-
dimensional nuclear variable R is represented as a one-dimensional parameter. (Left) The adiabatic
surface of interest is supposed non-degenerate, and the nuclear dynamics of the system S is mostly
determined by the single non-degenerate potential surface under consideration. (Right) Two (or
more) adiabatic surfaces are degenerate at R0, and the nuclear dynamics of the system S is deter-
mined by the whole set of degenerate adiabatic surfaces.

Solving Eqs. (2.2) and (2.3) provides the wavefunctions and energies of both the electrons and the
nuclei. The problem we aim to address is now represented by a system of interacting electrons in
the external field created by the nuclei.
However, even with this significant simplification, solving the electronic Eq. (2.2) remains a problem
involving 4N variables, N being the total number of electrons. To avoid dealing with the full 4N -
variable equation, one may consider an integrated variable to describe the system, such as the
electronic density:

n(r) ≡ N

∫
|Ψ(r, r2, ..., rN )|2dr2...drN

where Ψ is the N -electron wavefunction. We will explore this idea in the next section.

2.3 Density Functional Theory (DFT)

The idea of shifting the focus from the complex many-body ground-state wavefunction to the more
manageable ground-state one-body electron density n(r) originated from early efforts to develop
variational methods. These methods aimed to express the energy and other physical observables of a
system as functionals of the electron density. Notable examples of such efforts include the density-
dependent exchange functional introduced by the works of Thomas and Fermi and Slater [2–4].
However, it was the groundbreaking work of Hohenberg and Kohn [5] (1964) and Kohn and Sham [6]
(1965) — work that eventually earned W. Kohn the Nobel Prize in Chemistry in 1998 — that pro-
vided a solid theoretical foundation for the use of electron density. This revolutionary development
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is known as Density Functional Theory (DFT).
DFT is based on the principle that any ground-state property of a many-body system, particularly
the ground-state energy, can be expressed as a functional of the ground-state electron density n0(r).
This allows the reformulation of the many-body problem into one that depends on the density of
independent particles within an effective mean-field potential, which approximates the interacting
system. The resulting independent-particle equations are known as the Kohn-Sham equations (see
Sec. 2.3.2).

2.3.1 The Hohenberg-Kohn Theorems

DFT is based on the theorems first proved by Hohenberg and Kohn [5]. This approach applies
to any system of interacting particles in an external potential Vext(r), including the many-body
problem of interacting electrons and fixed nuclei, where the Hamiltonian can be written as:

H = −
∑
i

ℏ2∇2
i

2m
+

1

2

∑
i̸=j

e2

|ri − rj |
−
∑
i,I

ZIe
2

|ri −RI |

= −
∑
i

ℏ2∇2
i

2m
+

1

2

∑
i̸=j

e2

|ri − rj |
+
∑
i

Vext(ri) (2.4)

The first Hohenberg and Kohn theorem reads:

Theorem 1 . For any system of interacting particles in an external potential Vext(r), and with a
non-degenerate ground state, the potential Vext(r) is determined uniquely, except for a constant, by
the ground-state particle density n0(r).

This theorem can be proved via a reductio ad absurdum. The procedure is reported schematically
in Fig. 2.2
We introduce the set of external potentials {Vext(r)}, the set of ground-state wavefunctions {Ψ0}
and the set of electron ground-state densities {n0(r)}. Since the wavefunctions are solutions of the
equation:

H|Ψ0⟩ = E|Ψ0⟩

with H containing Vext(r), we can define a mapping C from the set of the external potentials
{Vext(r)} to the set of wavefunctions {Ψ0}. Then, we can define a mapping D from the wavefunc-
tions set to the densities set {n0(r)}, since the density is defined as:

n0(r) = N

∫
Ψ0(r, r2, ...rN )Ψ∗

0(r, r2, ...rN )dr2...drN

Here, we suppose that the ground state of the system Ψ0 is non-degenerate (anyway, the restriction
of non-degeneracy, as well as other assumptions, can be relaxed when required).
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Figure 2.2: Mappings between the sets of external potentials {Vext}, wavefunctions {ψ} and densities
{n}, and their inverse

To prove the theorem, we suppose that the inverse maps of C and D do not exist. Let us first assume

that C−1 does not exist. If so, two external potentials V
(1)
ext (r) and V

(2)
ext (r), which differ by more

than a constant, can be associated to a single wavefunction Ψ0. We can then write the eigenvalue
equations for the corresponding Hamiltonians (differing only for the potential) and subtract them:

(H1 −H2)|Ψ0⟩ = (E1 − E2)|Ψ0⟩

(V
(1)
ext − V

(2)
ext )|Ψ0⟩ = (E1 − E2)|Ψ0⟩

Since V
(1)
ext (r) and V

(2)
ext (r) differ by more than a constant, V

(1)
ext (r) − V

(2)
ext (r) is not zero. However,

Ψ0 is the same for both equations, implying that V
(1)
ext (r) − V

(2)
ext (r) = const , contradicting the

initial assumption. This implies that C−1 must exist, meaning that the external potential Vext(r)
is uniquely determined by the ground-state wavefunction Ψ0.
Similarly, if the inverse mapping D−1, from densities to wavefunctions, does not exist, then it is
possible to associate two different wavefunctions ψ1 and ψ2 with a single ground-state density n(r).

However, the external potentials V
(1)
ext and V

(2)
ext associated with these wavefunctions are different.

We can calculate the ground-state energies E1 and E2 using the respective Hamiltonians for these
states. Since the ground state is non-degenerate, these energies are always smaller than the expec-
tation values obtained by using the same Hamiltonians with any other states. Therefore, in practice:

E1 = ⟨ψ1|H1|ψ1⟩ < ⟨ψ2|H1|ψ2⟩ = ⟨ψ2|H2 − V
(2)
ext + V

(1)
ext |ψ2⟩

E1 < E2 +

∫
n(r)

(
V

(1)
ext (r) − V

(2)
ext (r)

)
d3r

In a similar way

E2 = ⟨ψ2|H2|ψ2⟩ < ⟨ψ1|H2|ψ1⟩ = ⟨ψ1|H1 − V
(1)
ext + V

(2)
ext |ψ1⟩

E2 < E1 +

∫
n(r)

(
V

(2)
ext (r) − V

(1)
ext (r)

)
d3r
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Summing the two results, one obtains

E1 + E2 < E1 + E2

which is impossible, so an inverse mapping D−1 must exist. □
The validity of this theorem implies the following important consequence corollary:

Corollary 1 . All the properties of the system are completely determined given only the ground-
state density n0(r).

Since we proved that the two mappings exist, we can consider any observable and write it as a
functional of the ground-state density:

⟨Ψ0|Ô|Ψ0⟩ = Ô[Ψ0] = Ô[Ψ0[n0]] = Ô[n0]

The second Hohenberg-Kohn theorem states the following.

Theorem 2 . A universal functional FHK[n] of the density n0(r) can be defined, independently
of the external potential Vext(r). For any particular Vext(r), the exact ground-state energy of the
system is the global minimum of the energy functional and the density that minimizes the functional
is the exact ground-state density n0(r).

The first part is easily proven once one has carefully defined the meaning of a functional of the
space density1.
According to the Corollary (1), all properties are uniquely determined if the ground-state density
n0(r) is specified. Consequently, all these properties can be viewed as functionals of n0(r), including
the total energy functional:

E[n0] = T [n0] +W [n0] + Vext[n0] ≡ FHK[n0] + Vext[n0], (2.5)

The Hohenberg-Kohn functional

FHK[n0] = ⟨ψ[n0]|T +W |ψ[n0]⟩, (2.6)

with T being the electron kinetic energy and W the electron-electron interaction, is a universal
functional, because it remains the same for all systems. The only term that varies from one system
to another is Vext.
Moving to the second part of Theorem 2, the energy given by Eq. (2.5) in terms of the Hohenberg-
Kohn functional, evaluated for the correct ground-state density n0(r), is indeed lower than the
value of this expression for any other density. It follows that, if the functional FHK[n] is known,
then by minimizing the total energy of the system with respect to variations in the density n0(r),
one would find the exact ground-state properties. However, it is not known explicitly, and must be
thus appropriately approximated.

1The original proof of Hohenberg and Kohn is restricted to densities n(r) that are ground-state densities of the
electron Hamiltonian with some external potential Vext. Such densities are called “V-representable”. An alternate
functional definition due to Levy and Lieb loosens this restriction to densities that can be generated from an N-
electron wavefunction or “V-representable” [7].
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2.3.2 The Kohn-Sham Equations

The work by Kohn and Sham [6] represents a cornerstone of modern computational quantum
chemistry and condensed matter physics, providing a practical framework for solving the complex
many-body problem of interacting electrons in a system. Derived from DFT, this approach simplifies
the many-body problem into a set of self-consistent single-electron Schrödinger equations (which
are exactly solvable in theory), thereby making the problem more tractable without sacrificing
significant accuracy. By introducing a fictitious system of non-interacting electrons that possess
the same ground-state density as the real, interacting system, this procedure allows for an efficient
calculation of electronic properties of atoms, molecules, and solids. The electrons are assumed to be
uncorrelated, except for what is required to satisfy the exclusion principle. An effective potential,
that is purely a function of the particle density, is then included to approximate the effects of
many-body correlation. Indeed, it can be shown that the ground-state density of the interacting
many-body system can be generated from a simpler system of non-interacting particles. All the
many-body interactions are abstracted away into an effective potential in which the electrons move.
Let us consider two systems with the same density, one composed of interacting electrons, while
the other has non-interacting electrons. Let us suppose that the interacting and non-interacting
systems have the same density, namely

n(r) ≡ nI(r) = nNI(r) =
∑
i

|ϕi(r)|2

where the {ϕi} are the independent-particle orbitals and the subscripts I and NI stand for interacting
and non-interacting, respectively. We can then write the equations of the non-interacting and
interacting systems as

NI :

(
− ℏ2

2m
∇2 + Veff(r)

)
ϕi(r) = ϵiϕi(r) (2.7)

I :

−
∑
i

ℏ2∇2
i

2m
+

1

2

∑
i ̸=j

e2

|ri − rj |
−
∑
i,I

ZIe
2

|ri −RI |

Ψ(r) = EΨ(r) (2.8)

The energy functionals of these systems are:

ENI[n] = TNI[n] +

∫
Veff(r)n(r)d3r (2.9)

EI[n] = TI[n] +W [n] +

∫
Vext(r)n(r)d3r (2.10)

with Veff(r) being the effective potential in the non-interacting system and Vext(r) the external
potential introduced before. We can rewrite the latter by summing and subtracting TNI[n], EH[n],
i.e. the Hartree energy defined as:

EH[n] ≡
∫
n(r)n(r′)

|r− r′|
d3rd3r′



10

and by introducing the exchange and correlation energy functional Exc[n], which stands for a
correction term due to exchange (x) and correlation (c) effects:

Exc[n] = TI[n] − TNI[n] − EH[n] +W [n] (2.11)

In this way, we obtain the total energy functional of the interacting system, the so-called Kohn-Sham
functional :

EI[n] = TNI[n] + EH[n] + Exc[n] +

∫
Vext(r)n(r)d3r (2.12)

We aim to find the Veff(r) that ensures the same ground-state density and, consequently, the
same ground-state energy, in accordance with the Hohenberg-Kohn theorems. To achieve this, we
minimize the functional derivatives of the two energy functionals2:

δENI

δn

∣∣∣∣
n=n0

= 0 =

[
δTNI

δn
+ Veff(r)

] ∣∣∣∣
n=n0

δENI

δn

∣∣∣∣
n=n0

= 0 =

[
δTNI

δn
+ VH(r) + Vxc(r) + Vext(r)

] ∣∣∣∣
n=n0

where we named VH(r) =
∫ n(r′)

|r−r′|d
3r′ the Hartree potential and Vxc(r) the functional derivative of

the exchange and correlation energy (2.11). By comparing these results, we get an expression for
the effective potential (also known as Kohn-Sham potential):

Veff(r) = VH(r) + Vxc(r) + Vext(r) (2.13)

By substituting Veff(r) in Eq. (2.7), we obtain the Kohn-Sham equations:(
− ℏ2

2m
∇2 +

∫
n(r′)

|r− r′|
d3r′ + Vxc(r) + Vext(r)

)
ϕi(r) = ϵiϕi(r) (2.14)

These single-particle differential equations depend on the electron density, which is not known a
priori. By solving the equations self-consistently, using trial functions to provide an initial guess for
the electron density of the system, one can iterate the process until the desired precision threshold
is reached. We will revisit this point in Sec. 2.4.1.
Now, by multiplying on the left by ϕ∗(r), integrating over d3r and summing over i, we obtain:

2Here, we apply the standard variational procedure, minimizing the functional with respect to n(r), under the
constraint of the normalization of the wavefunctions {ϕi(r)} (the Lagrange multipliers method).
The functional derivative of G[f(r)] is defined as

δG[f(r)] =

∫
δG[f(r)]

δf(r)
δf(r)d(r)
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∑
i

ϵi = ENI[n] = TNI[n] +

∫
n(r)n(r′)

|r− r′|
d3rd3r′ +

∫
Vxc(r)n(r)d3r +

∫
Vext(r)n(r)d3r

= TNI[n] + 2EH +

∫
Vxc(r)n(r)d3r +

∫
Vext(r)n(r)d3r

By comparing EI[n] (2.12) and ENI[n] (2.9), we find that the ground-state energy of the interacting
system can be expressed in terms of the non-interacting one, plus a correction that depends solely
on the density, that is

EI[n] =
∑
i

ϵi − EH −
∫
Vxc(r)n(r)d3r + Exc[n]

We first notice that the Kohn-Sham equations are standard differential equations with a rigorously
local effective potential; any difficulty in the procedure is confined to making a reasonable guess
of the exchange-correlation functional Exc[n], which is generally not known a priori. Conceptually,
the Kohn-Sham equations exactly determine the electron density and the electronic energy of the
ground state. However, the orbital energies εi appearing in the Eq. (2.14) are purely formal La-
grange multipliers and do not have a direct physical interpretation, as is the case in Koopmans’
theorem [8]. Any identification of the εi with one-particle energies, whether occupied or unoccu-
pied, must be justified on a case-by-case basis. The exact Kohn-Sham theory only guarantees that
the eigenvalue of the highest occupied state has a physical meaning [9]. This can be understood by
considering that the true many-body fully interacting system must have the same ionization energy
as the Kohn and Sham system since they are both assumed to have the same density. Nonethe-
less, Kohn-Sham eigenvalues are usually used to describe band structures, also taking into account
empty states. This leads to a fundamental problem which is discussed in the next section.

2.3.3 The Band Gap Problem in DFT

As mentioned in the previous section, DFT is a ground-state theory. In spite of this, it has been
regularly used throughout the years to compute, for example, band structures and optical properties
of materials, which actually involve excited states3. In this framework, the excited states are treated
as functionals of the ground-state density. As a result, the band structures obtained from these
calculations typically have band gaps that are systematically underestimated, often up to 50% of
the experimental values for semiconductors and insulators [10]. This discrepancy arises in the first
place because the Kohn-Sham equations are single-particle differential equations, which neglect all
possible many-body contributions; however, it is mainly due to an intrinsic limitation of DFT.
In non-metallic systems, the nature of the states changes discontinuously at the band gap [11].
The band gap is defined as the difference between the valence band maximum (VBM) and the
conduction band minimum (CBM)4. For an insulating N -particle system, the difference between

3This is due to the fact that DFT is computationally enormously more affordable than any excited-state theory
and the results are generally in good qualitative — but not quantitative — agreement with experiments.

4In molecular systems, these gap edges are referred to as the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO), respectively.



12

the vacuum level and the VBM is the energy required to remove an electron from the system, known
as ionization energy I = [E(N −1)−E(N)]; whereas, using the CBM, one gets the energy required
to add an electron to the system, known as electron affinity A = [E(N) − E(N + 1)]. Thus, the
band gap energy can be defined as

Egap = I −A (2.15)

It is important to note that the definition in Eq. (2.15) involves total energies, as the entire system
is affected by the removal or addition of an electron. Since the chemical potential µ can be written
as the functional derivative of the ground-state energy with respect to the density, i.e.

µ =
δE[n]

δn

the ionization energy (I) and the electron affinity (A) can be expressed in terms of the functional
derivatives of the energy, and so the band gap5

I = E(N − 1) − E(N) = −δE[n]

δn−
= µ−

A = E(N) − E(N + 1) = −δE[n]

δn+
= µ+

Egap = I −A =
δE[n]

δn+
− δE[n]

δn−
= ∆

δE[n]

δn

Here, ∆ δE[n]
δn indicates the discontinuity of the functional derivative. The ± signs in the derivative

denote right and left derivatives, where µ+ = µ(N + δ) and µ− = µ(N − δ). The band gap is
therefore given by the discontinuity in the functional derivative of the ground-state energy. Now,
considering both the energy gap of the interacting (2.12) and non-interacting systems (2.9), we can
write:

EI
gap = ∆

δTNI[n]

δn
+ ∆

δExc[n]

δn
= ∆

δTNI[n]

δn
+ ∆Vxc

ENI
gap = ∆

δTNI[n]

δn

In the non-interacting system, the only discontinuity arises from the kinetic energy functional
TNI [n], since the external potential and the Hartree potential are both continuous functionals of
the density. In the interacting system, however, Exc[n] may be discontinuous. Comparing the two
expressions above, we obtain the important relation:

EI
gap = ENI

gap + ∆Vxc

5It can be shown that by definition
∂E(N)
∂N

≡ δE[n]
δn

.
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This shows (recalling the discussion in Sec. 2.3.2) that the band gap obtained from the Kohn-Sham
eigenvalues differs from that of the real interacting system by a quantity equal to the discontinuity
of the exchange-correlation potential.

2.3.4 The Exchange-Correlation Functional

To solve the Kohn-Sham equations (2.14), the central task is to find an approximation for the
exchange-correlation (XC) functional that accurately reproduces the complex effects of electron
exchange and correlation. A significant advantage of this approach is that, because these effects
are typically short-ranged, they can be well approximated using a local or semi-local functional of
the electron density. This allows for practical and computationally feasible implementations that
still capture the essential physics of many-electron systems.
To approximate the exact XC functional, we introduce the quantity nxc(r, r

′), known as the XC
hole6. This quantity represents a region around each electron in an interacting system where the
probability of finding another electron is reduced, a consequence of both the Pauli exclusion princi-
ple and electron-electron repulsion. We also modulate the strength of electronic interactions using
a coupling constant λ: with a fixed electron density, λ = 1 corresponds to the fully interacting,
physical system, while λ = 0 corresponds to the non-interacting, fictitious system. The XC func-
tional can thus be viewed as the energy resulting from the interaction between an electron and its
XC hole across all values of λ:

Exc[n(r)] =
1

2

∫
n(r)d3r

∫
nxc(r, r

′)

|r− r′|
d3r′ (2.16)

where the XC hole nxc(r, r
′) is the averaged nλxc(r, r

′) over the coupling constant λ:

nxc(r, r
′) =

∫ 1

0

nλxc(r, r
′)dλ

The XC hole satisfies the sum rule ∫
nxc(r, r

′)d3r′ = −1

6The exchange hole refers to the region around a given electron where the probability of finding another electron of
the same spin is reduced due to the Pauli exclusion principle. As a result, each electron creates a “hole” around itself,
lowering the electron density in its immediate vicinity for electrons with parallel spins. This reduction in probability
density is purely a quantum mechanical effect and does not involve any explicit interaction between electrons; rather,
it arises from the antisymmetry requirement of the many-electron wavefunction.
The correlation hole, on the other hand, accounts for the electron-electron repulsion effects beyond the Pauli exclusion
principle. This includes the dynamic correlation where electrons avoid each other due to their mutual Coulomb
repulsion. Unlike the exchange hole, the correlation hole affects the spatial distribution of all electrons, regardless of
their spins. This results in a further depletion of electron density around a given electron, reflecting the likelihood
that other electrons, due to their repulsive interaction, will be found less frequently in its proximity.
Together, the XC hole describes the total reduction in electron density around a given electron due to both quantum
mechanical exchange effects and electron-electron repulsion. These concepts are crucial for constructing accurate XC
in DFT.
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which implies that the XC hole has a deficit of exactly one electron, therefore an electron and its
hole have no net charge. Now we can define another useful quantity, the XC energy per particle:

ϵxc[n(r)] =
1

2

∫
nxc(r, r

′)

|r− r′|
d3r′

We can now rewrite the XC energy functional (2.16) as:

Exc[n(r)] =

∫
n(r)ϵxc[n(r)]d3r

This is the quantity we aim to approximate. Different types of approximations vary in how they
construct the XC energy per particle by sampling the density around each electron in distinct ways.
In the following sections, we will present some general forms that are particularly relevant to solid-
state systems.

2.3.5 Local Density Approximation (LDA)

The most common approximation arises from assuming that the system approaches the limit of a
homogeneous electron gas, leading to what is known as the local density approximation (LDA), first
introduced by Kohn and Sham in 1965 [6]. In principle, this is justified in systems with reasonably a
slowly-varying spatial density n(r), at most locally constant. Here, we decompose Exc into separate
contributions accounting for both exchange (x) and correlation (c). In the case of a homogeneous
electron gas, the exchange term possesses a straightforward analytic form.

ELDA
x [n] = −3

4

(
3

π

) 1
3
∫
n(r)

4
3 d3r

The correlation term is more complex and is not known exactly, except in the low and high den-
sity limits. For intermediate densities, among the various forms, the more commonly used are the
Rayleigh-Schrödinger perturbation [12], computational methods like Quantum Monte Carlo — due
to Ceperley and Alder [13] — or analytical expressions like the one given by Perdew and Zunger [14].
As an approximation for a homogeneous electron gas, one would expect better results for systems
that closely resemble this ideal state, such as simple metals, and poorer results for highly inho-
mogeneous systems like molecules. Surprisingly, the LDA approach has proven successful across a
broad range of systems, despite significant density fluctuations. Part of the reason lies in the fact
that, in many materials, the effects of exchange and correlation are typically short-ranged, allowing
them to be effectively captured by a local functional [7]. Combined with a spinorial description of
the DFT, it is called local spin density approximation (LSDA).

2.3.6 General Gradient Approximation (GGA)

The next level of approximation involves considering not only the electron density but also its
gradient ∇n(r). This extension leads to the generalized gradient approximation (GGA) [15] for the
XC functional, where the functional takes the form
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EGGA
xc [n] =

∫
n(r)ϵxc(n(r),∇n(r))d3r

XC functionals in GGA are semi-local. GGA typically improves predictions of total energies and
energy differences over LDA. However, despite these advances, GGA still struggles to reliably de-
termine band gaps. This limitation arises because GGA, like LDA, does not adequately capture the
non-locality of XC effects, which is crucial for accurately describing band gaps in semiconductors
and insulators. Thus, while GGA represents a significant improvement over LDA in many respects,
challenges in band gap predictions persist, motivating ongoing research into more advanced XC
functionals.

2.3.7 Hybrid Functionals

Another rung of the ladder is given by hybrid functionals, a large family of XC functionals, mostly
developed and used in the computational chemistry community, that incorporate a portion of exact
exchange EHF

x as obtained from the HF theory, with the rest of the XC energy obtained from other
sources (ab initio or empirical). The exchange term energy is

EHF
x = −1

2

∑
ij

∫ ∫
ψ∗
i (r1)ψ∗

j (r2)
1

r12
ψj(r1)ψi(r2) (2.17)

and it is expressed in terms of the Kohn–Sham orbitals rather than the density. This scheme allows
to improve many molecular properties, such as atomization energies, bond lengths and vibration
frequencies, which tend to be poorly described with simple ab initio functionals [16]. Each specific
hybrid functional is built as a linear combination of LDAs, GGAs, and HF contributions, with the
coefficients chosen, empirically or not, to optimize selected set of observables (bond lengths, band
gaps, etc.). For example, the popular B3LYP (Becke, three-parameter, Lee-Yang-Parr) [17–19] is
written as

EB3LYP
xc = ELDA

xc + a0(EHF
x − ELDA

x ) + ax(EGGA
x − ELDA

x ) + ac(E
GGA
c − ELDA

c )

where a=0.2, ax = 0.72, ac = 0.81 are three empirical parameters, EGGA
x and EGGA

c are the GGA
energy functionals, formulated with the Becke88 [15] exchange functional and the correlation func-
tional of Lee, Yang and Parr and ELDA

c is the Vosko-Wilk-Nusair [20] LSDA correlation functional.
Another example of hybrid potential is PBE0 [21]:

EPBE0
xc = aEHF

x + (1 − a)EPBE
x + EHF

c

This potential is based on the Perdew-Burke-Ernzerhof (PBE) XC functional by Perdew et al. [16]
The mixing coefficient a = 1/4 is obtained by perturbation theory and thus not empirical.
A more refined (and computationally expensive) class of hybrid functionals is that of the range-
separated hybrids. Unlike conventional hybrid functionals, in these functionals, the exchange en-
ergy is separated into short-range and long-range components. Typically, a portion of the exact
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exchange is applied at long ranges, while a different functional is used for short-range interac-
tions. This approach helps to better capture both local correlation effects and long-range Coulomb
interactions, leading to more accurate descriptions of electronic properties, especially in systems
with significant long-range interactions, such as in molecular systems, van der Waals complexes,
and materials with strong correlation effects. An example of this type of hybrid functionals is the
Heyd–Scuseria–Ernzerhof (HSE) XC functional [21]:

EHSE
xc = aEHF,SR

x (ω) + (1 − a)EPBE,SR
x (ω) + EPBE,LR

x + EPBE
c (2.18)

where the superscripts SR and LR stand for short-range and long-range, respectively. a is the mixing
parameter and ω is an adjustable parameter controlling the short-rangeness of the interaction.
Standard values of a = 1/4 and ω = 0.2 (usually referred to as HSE06) have been shown to give
good results for most systems.
In this Thesis, hybrid functionals were used to tackle the shortcomings of DFT in zero-dimensional
systems, as shown in Sec. 6.1.

2.4 Methods and Implementations in DFT

Having established the foundational principles of DFT through the Hohenberg-Kohn theorem, which
demonstrates that the ground-state properties of a system are uniquely determined by its electron
density, and the Kohn-Sham equations, which provide a practical framework for solving the many-
electron problem, we now embark on a deeper exploration of DFT. In particular, the following
sections address practical issues concerning the actual resolution of Kohn-Sham equations, the
methods and implementations needed to tackle DFT at a computational level.

2.4.1 The Self-Consistent Approach

The self-consistent approach lies at the heart of solving the Kohn-Sham equations in DFT. It
involves iterative adjustment of the electron density and the effective potential Veff (2.13) until a
consistent solution is achieved, ensuring that the total energy functional reaches a minimum. This
is schematically depicted in the diagram of Fig. 2.3.

1. Initial Guess: Begin with an initial guess for the electron density n(0)(r).

2. Effective Potential Calculation: Compute the effective potential V
(0)
eff (r) by varying the

total energy functional with respect to the electron density. This potential is used in Eq. (2.14)
to solve for the Kohn-Sham states.

3. Solve Kohn-Sham Equations: Solve the Kohn-Sham equations (2.14) with the initial guess

of the electron density and the effective potential V
(0)
eff (r). This involves solving an eigenvalue

problem for each orbital, constituting the main computational effort.

4. Update Electron Density: From the Kohn-Sham orbitals, calculate the new electron den-
sity n(1)(r).
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5. Convergence Check: Compare n(1)(r) with n(0)(r) to check for convergence. If the change
is below a predefined threshold, the self-consistency is achieved, and the calculation concludes.
If convergence criteria are not met, update Veff using the new density n(1)(r) and repeat the
process from step 3.

This iterative process continues until self-consistency between the calculated electron density and
the effective potential is achieved. This methodology ensures that the Kohn-Sham equations accu-
rately describe the electronic structure of the system under consideration.

Figure 2.3: Flow chart of the self consistent calculations performed when using Density Functional
Theory.

2.4.2 The Plane Waves Expansion

The choice of plane waves (PWs) as a basis set to expand the Kohn-Sham eigenfunctions is one of
the most common approaches used in computational methods for DFT calculations, particularly
for studying infinite periodic systems like crystals. This formulation is implemented in the software
we used for all DFT calculations in this work, Quantum ESPRESSO (QE) [22,23]. The advantage
of using PWs is that the kinetic energy operator is diagonal in the plane wave representation,
simplifying the calculations. Additionally, the matrix elements of the effective potential Veff (2.13)
can be efficiently computed using Fourier transforms, enhancing computational efficiency.
Let us start off by stating that the wavefunction of an electron in a periodic crystalline potential
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has the same periodicity as the potential. This is a consequence of Bloch’s theorem [24]. Given a
wavevector k in the first Brillouin Zone of the reciprocal lattice, the j-th Kohn-Sham eigenfunction
ϕj,k(r) reads:

ϕj,k(r) = uj(r)eik·r (2.19)

The functions uj(r) have the same periodicity of the lattice and can be expressed in PWs, with the
wavevectors G being the reciprocal lattice vectors

uj(r) =
∑
G

cj,Ge
iG·r

where cj,G are the PWs coefficients. Consequently, we can write the wavefunction (2.19) of the
electron in the band j as

ϕj,k(r) =
∑
G

cj,k+Ge
i(k+G)·r (2.20)

Now, by introducing the Fourier transform in the reciprocal space of the effective potential Veff(r) ≡
Vext(r) + VH(r) + Vxc(r),

Veff(r) =
∑
G

V̄eff(G)eiG·r

we obtain a simpler expression of the Kohn-Sham equations in reciprocal space∑
G′

[
1

2
|k + G|2δG,G′ + V̄eff(G−G′)

]
cj,k+G′ = ϵ(k)cj,k+G′ (2.21)

where the first term is the kinetic contribution and is diagonal. The calculation is exact with an
infinite sum over G vectors.
Following an intuitive consideration due to Herring [25], it is easily seen that a pure expansion of
crystal states into PWs is seriously flawed by the so-called variational collapse problem. Indeed,
since core states are strongly localized in real space, their accurate description would require a large
number of PWs, and then a prohibitive number of equations like (2.21) to solve. For instance, to
reproduce the 1s state of bulk Silicon (Z = 14), the number of equations to be solved should be of
the order of (106 × 106). It is clear that reproducing core states using PWs is basically impossible.
DFT codes make use of a parameter known as the kinetic cutoff Ecut to limit the number of PWs
used to expand Kohn-Sham eigenfunctions, since the first terms have the highest contribution. We
truncate the sum on G such that

1

2
|k + G|2 ≤ Ecut

One needs to check for the convergence of the results with respect to Ecut. The advantage is that
the precision of the results can be improved by increasing Ecut. Indeed, it is important to keep in
mind that the number of PWs, NPW, grows as
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NPW ∼ Ω

6π2
(Ecut)

3
2

where Ω is the volume of the primitive unit cell. However, the number of PWs required to describe
highly curved wavefunctions lengthens the calculations. This is especially true in the case of the
core electrons in atoms. In the next section, we present a way to work around this issue.

2.4.3 Pseudopotentials

To address the variational collapse and the high computational cost associated with the PW for-
mulation, especially in the region around atoms, we employ the so-called pseudopotential method
7. In the core region of atoms, the electronic wavefunction exhibits significant oscillations, necessi-
tating a large number of PWs for an accurate description. Moreover, the core electronic structure
is generally unaffected by the chemical bonds formed by outer electrons. Valence electrons do not
experience the full Coulomb potential of the nucleus directly; instead, they encounter a potential
that is screened by the core electrons. To simplify calculations, the pseudopotential approximation
replaces the strong and singular ionic potential in the core region with a weaker pseudopotential.
This transformation leads to the concept of pseudo-atoms and pseudo-wavefunctions. These pseudo-
wavefunctions are required to represent the genuine crystalline wavefunctions only outside the core
region and should be compared, to ensure accuracy and reliability, to the all-electron wavefunctions,
which are derived using the actual atomic potential.
Given rcore, a parametric radius that defines the core region, any valid pseudopotential must fulfill
the following conditions (see Fig. 2.4):

• for r > rcore, i.e. outside the core region, the pseudopotential and the original potential must
be identical,

• for r > rcore, the valence pseudo-wavefunctions are the same as those obtained for a reference
configuration of the chosen atom,

• for r < rcore, i.e. inside the core region, the pseudo-wavefunction must not have any node,

• the valence states of the pseudo-atom must be equal to those obtained from the resolution of
the Schrödinger equation for the real atom.

When the pseudopotential is constructed to reproduce the exact electron density of the system, it
is referred to as norm-conserving. Using pseudopotentials in conjunction with PWs to expand the
Kohn-Sham eigenfunctions becomes, in this context, a convenient choice.

7The introduction of this method is based on the experimental evidence showing that the physical properties of
materials are primarily determined by valence electrons. Core electrons, which are localized closer to the nucleus and
possess less energy, can be considered frozen in their atomic configuration. Therefore, they have minimal impact on
the properties of the material, allowing the focus to be placed on the behavior of valence electrons for more accurate
and efficient modeling and analysis.
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Figure 2.4: Comparison of a wave function in the Coulomb potential of the nucleus (blue) to the
one in the pseudopotential (red). The real and the pseudo-wavefunction and potentials match above
a certain radius rcore, called core radius.

2.4.4 The Semi-Core Problem

When generating a pseudopotential, several parameters need to be optimized, including the choice
of core and valence states. A simplistic approach might consider valence states as those that con-
tribute to chemical bonding and core states as those that do not. However, the situation can be
more complex, and what works for DFT may not be sufficient for post-DFT methods.
For example, in the case of chalcogens, whose typical outer electronic configuration is ndi(n +
1)sj(n+ 1)pk, it is not always evident that the lower ns and np states can be safely included in the
core. The problem arises because nd states are localized in the same spatial region as ns and np
states, which are deeper than (n + 1)s and (n + 1)p. This can lead to an underestimation of the
exchange energy when performing more refined calculations [26].
A pseudopotential that uses a more naive choice of valence states may yield good results in solids
with weak or metallic bonding but may fail in compounds with stronger bonding. This is often the
case for many transition and noble metals. Including semi-core states in the valence can improve
pseudopotential transferability but will make it “heavier” (requiring a higher kinetic energy cutoff).

2.4.5 Brillouin Zone Sampling

Due to Bloch’s theorem, which ensures the periodicity of wavefunctions in a crystal lattice, it suffices
to consider wavevectors k that belong to the first Brillouin Zone (BZ). Indeed, any wavevector k′

outside the BZ can be mapped to an equivalent vector k inside the zone. Thus, for periodic
systems, rather than computing integrals of observables in real space, it is more convenient to
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work in reciprocal space and perform integrations over vectors k (or equivalently, k-points) within
the first BZ. In practice, because electron wavefunctions exhibit only gradual variations over small
distances in reciprocal space, we can approximate the integral of any function F (k) by a weighted
discrete sum ∫

BZ

F (k)dk =
1

Ω

∑
j

wjF (kj)

where Ω is the volume of the reciprocal cell of the crystal, and wj is the weight associated with the
k-point kj . The number of k-points significantly affects the precision of the results, so it must be
adjusted by verifying the convergence of the total energy with increasing k-points. One common
method for selecting k-point positions is the Monkhorst-Pack method [27], which distributes k-
points uniformly in reciprocal space on a grid within the BZ.

kj = x1,jb1 + x2,jb2 + x3,jb3

where b1, b2, b3 are reciprocal lattice vectors and

xij =
li
nj
, j = 1, ..., nj

li represents the lengths of the reciprocal lattice vectors, and nj denotes the number of special k-
points in the set. Typically, crystal symmetries are employed to further reduce the required number
of k-points by adjusting the corresponding weights wj .

2.4.6 Including Spin in DFT

An approximate Hamiltonian for a system of interacting electrons in an electromagnetic field,
including spin, can be written as

H =
∑
i

[
Π2

i

2m
− µBσi ·B(ri) + qϕ(ri)

]
+

1

2

∑
ij

q2

|ri − rj |

where Π = p − qA(r), A(r) is the electromagnetic vector potential, q is the charge, µB = ℏq/2m
the Bohr magneton, σi are the Pauli matrices, B is the magnetic field and ϕ(r) the scalar potential.
Before reformulating DFT starting from this Hamiltonian, we make a further simplification. We
set πi = pi, neglecting the coupling of the electron orbital momentum with the magnetic field. We
then rewrite this Hamiltonian by introducing the 2 × 2 matrix of the external one-body potential

V σ,σ′

ext =

(
qϕ(r) − µBBz(r) −µB(Bx(r) − iBy(r))

−µB(Bx(r) + iBy(r)) qϕ(r) + µBBz(r)

)
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with σ, σ′ being the spin indices 8. As in the standard Kohn-Sham formulation, one can introduce
an auxiliary system that, in this case, consists of a gas of non-interacting electrons with spin, having
the same spin-density as the many-body system. The wavefunctions of this auxiliary system are
Slater determinants of two-component, one-electron spinors ψi(r, σ). The system is now described
by the spin-density, which is expressed as

nσσ′(r) =
∑
i

ψ∗
i (r, σ)ψi(r, σ

′)

=
∑
i

(
ψi(r, ↑)∗ψi(r, ↑) ψi(r, ↑)∗ψi(r, ↓)
ψi(r, ↓)∗ψi(r, ↑) ψi(r, ↓)∗ψi(r, ↓)

)

By means of the Pauli matrices σ = (σx, σy, σz), it is possible to write the spin-density matrix of
the system as

nσσ′(r) =
1

2
(n(r)1 + σ ·m)

=
1

2

(
n(r) +mz((r)) mx(r) + imy(r)
mx(r) − imy(r) n(r) −mz(r)

)

where n(r) is the usual charge density

n(r) = Tr(nσσ′(r)) =
∑
i,σ

ψ∗
i (r, σ)ψi(r, σ)

and the three-dimensional vector m(r) is the magnetization density, defined as

m(r) =
∑
σσ′

∑
i

ψ∗
i (r, σ)σσσ′ψi(r, σ

′)

When introducing spin in DFT, the fundamental quantities are thus four real densities that can be
chosen to be either the four components of nσσ′ or the charge density n(r) plus the three components
of m(r). This general formulation is often referred to as the non-collinear case.
The kinetic energy functional (using from now on atomic units) is diagonal in the spin indices and
is given by

TNI[nσσ′(r)] =
∑
i,σ

⟨ψi,σ| −
1

2
∇2 |ψi,σ⟩

The energy due to the interaction between the electrons and the external potential reads

Eext[nσσ′ ] =
∑
σ,σ′

∫
d3rV σ,σ′

ext (r)nσσ′(r)

8One can show that the ground-state energy of the many-body Hamiltonian is a functional of nσσ′ (r) [28], though

V σ,σ′

ext (r) is not uniquely determined by the spin-density.
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while the Hartree energy can be written in terms of the charge density only, EH[n(r)]. The unknown
XC part of the total energy functional will also incorporate spinors through the density, becoming
Exc[nσσ′(r)] 9.
By minimizing the total energy functional with respect to the orbitals ψi(σ), while keeping into
account the orthogonality constraint of the one-electron wavefunctions∑

σ

⟨ψi,σ|ψj,σ⟩ = δij

we obtain the single-particle Kohn-Sham equations in the non-collinear case

−1

2
∇2ψi(r, σ) + VH(r)ψi(r, σ) +

δExc

δn
ψi(r, σ)

+
∑
σ′

(
V σ,σ′

ext (r)ψi(r, σ
′) + µB

δExc

δm
· σσ,σ′

ψi(r, σ
′)

)
= ϵiψi(r, σ) (2.22)

We can define the exchange and correlation potential Vxc and magnetic field Bxc as

Vxc(r) =
δExc

δn
and Bxc,α(r) = −δExc

δm

and a spin-dependent self-consistent local potential as

V σ,σ′

loc (r) = V σ,σ′

ext (r) + [VH(r) + Vxc(r)]δσ,σ
′
− µBBxc(r) · σσ,σ′

to obtain Eq. (2.22) in the compact form

∑
σ′

[
−1

2
∇2δσ,σ

′
+ V σ,σ′

loc (r)

]
ψi(r, σ

′) = ϵiψi(r, σ) (2.23)

2.4.7 Spin-Orbit Coupling (SOC)

Spin-orbit coupling (SOC) can be included in the solution of the Kohn-Sham equations, where the
resulting eigenvalues are subsequently used as input for calculations beyond DFT. The inclusion of
spin-orbit coupling necessitates a non-collinear treatment of spin.
SOC is fundamentally a relativistic effect that emerges from the relativistic formulation of quantum
mechanics. Starting from Dirac’s Hamiltonian for an electron in a central potential, an approximate
SOC term can be derived by considering the non-relativistic limit. This SOC contribution can then
be added to the non-relativistic Hamiltonian as a perturbation [7]

HSO ∝ 1

2c2r

dV

dr
L · S

9If we consider the version of LDA taking into account relativistic effects, namely LSDA, the XC energy depends
on the density and on the modulus of the magnetization density m(r), so we have Exc[n, |m|].
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where V denotes the system potential, r represents the radial coordinate with respect to the atomic
nucleus, and L and S are, respectively the orbital angular momentum and the electron spin oper-
ators. The term 1

r
dV
dr becomes significant primarily near the nucleus of a heavy atom, where r is

small and dV
dr is large.

SOC has a very profound effect on the energy band structure of solids. For example, in semicon-
ductors such as GaAs, SO gives rise to a splitting of the VBM (Fig. 2.5). In a tight-binding picture
without spin, the electron states at the valence band edges are p-like (orbital angular momentum
l = 1). With SOC taken into account, we obtain electronic states with total angular momentum
j = 3/2 (4-fold degenerate) and j = 1/2. These states are split in energy by a quantity ∆0, which
is referred to as the SO splitting energy. The value of this splitting is small for light atoms like Si
(∆0 ≃ 0.044 eV ), but it is significant for semiconductors composed of heavy atoms such as GaAs
(∆0 ≃ 0.34 eV ) or InSb (∆0 ≃ 0.82 eV ). The effect is even more evident in elemental Te and
it is somehow dependent on dimensionality. These examples illustrate how the motion of crystal
electrons is affected by SOC.

Figure 2.5: Qualitative sketch of the band structure of GaAs close to the fundamental gap. Note
that the state with j = 3/2 is 4-fold degenerate near the band-edge: these four bands are called
heavy-holes (HH) and light-holes (LH) because of the different effective mass. The split-off (SO)
band is separated by ∆0 from the heavy and light hole bands at Γ (k = 0) point.

In this work, SOC corrections were included, when necessary, as implemented in the QE suite [29,30],
in which SOC is introduced in the non-local part of the pseudopotential, which becomes a 2 × 2
matrix operating on the spinor wavefunctions and separate pseudopotential projectors are used for
each j = l ± 1

2 .
The SO interaction in the KS Hamiltonian is therefore introduced through the pseudopotentials
that are solutions of the four-component all-electron Dirac equations [31] for the atoms. Further
details on fully-relativistic pseudopotentials are given in the next section.
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2.4.8 Fully-Relativistic Pseudopotentials

In order to apply the above formalism to a real material, we use a relativistic pseudopotential as

the external potential. Typically, no external magnetic field is applied, and V σ,σ′

ext is diagonal with
respect to spin indices. A pseudopotential is applied to both spin components, consisting of a local
part Vloc(r) and a non-local part. The non-local part can be expressed by introducing projectors
onto orbital angular momentum channels around each atom i

VNL =
∑
i

∑
l,ml

Ei
l

∣∣βi
lY

i
l,ml

〉 〈
βi
lY

i
l,ml

∣∣
Since the radial components of solutions from a fully-relativistic atomic Dirac-like equation depend
on both the total angular momentum j and the orbital angular momentum l, while the radial
components of solutions from non-relativistic or scalar-relativistic equations depend only on l, this
pseudopotential can be constructed to include scalar-relativistic effects but not SOC.
If the pseudopotential is derived from components of the solutions of the Dirac equation, projectors
(βl,j) and pseudopotential coefficients El,j are obtained for each combination of l and j. To project
them into states with well-defined total angular momentum, the spin-angle functions

Y
j,mj

l,1/2 =


(

l+m+1
2l+1

)1/2
Yl,m(

l−m
2l+1

)1/2
Yl,m+1

 , Y
j,mj

l,1/2 =


(

l−m+1
2l+1

)1/2
Yl,m−1

−
(

l+m
2l+1

)1/2
Yl,m

 (2.24)

are defined for j = l+1/2 and j = l−1/2, respectively. In the first case m = mj −1/2, while in the
second m = mj + 1/2. Introducing (2.24) in the non-local part of the pseudopotential, we obtain

VNL =
∑
i

∑
l,j,mj

Ei
l,j

∣∣∣βi
l,jY

i,j,mj

l,1/2

〉〈
βi
l,jY

i,j,mj

l,1/2

∣∣∣
Therefore VNL is a 2 × 2 matrix in the spin indexes. This pseudopotential includes both scalar
relativistic and SOC effects.
If we then introduce the Clebsch-Gordan coefficients ασ,l,j

mj
, a unitary matrix Uσ,l,j

mj ,m′ which selects
the appropriate spherical harmonics

Y
j,mj ,σ

l,1/2 = ασ,l,j
mj

l∑
m′=−l

Uσ,l,j
mj ,m′Yl,m′

we can summarize all in the non-local pseudopotential as

V σ,σ′

NL =
∑
i

∑
l,j,m,m′

Ei,σ,σ′

l,j,m,m′

∣∣βi
l,jY

i
l,m

〉 〈
βi
l,jY

i
l,m′

∣∣
with the new coefficients
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Ei,σ,σ′

l,j,m,m′ = Ei
l,j

j∑
mj=−j

ασ,l,j
mj

Uσ,l,j
mj ,mα

σ′,l,j
mj

U∗,σ′,l,j
mj ,m′

where −l < m < l and −l < m′ < l.
The coefficients of the non-local pseudopotential become then spin-dependent, but the projectors
are still written in terms of spherical harmonics as in a scalar-relativistic pseudopotential.



Chapter 3

Theoretical Background:
Excited-State Properties

Electronic Properties

In the first part of this chapter, we introduce the many-body perturbation theory (MBPT) frame-
work, which overcomes the limitations of DFT in accurately describing the excited states properties
of materials. In the many-body approach, the key quantity is the Green’s function. The Green’s
function contains much more information than the electronic density, but it is also a more complex
object, making MBPT methods generally more computationally expensive than DFT. In the fol-
lowing sections, we introduce some physical concepts fundamental to MBPT and discuss common
approximations used to calculate electronic and optical properties.

3.1 Photoemission Spectroscopy

In a direct photoemission spectroscopy experiment, an electron is emitted from a sample due to the
absorption of a photon (see Fig. 3.1). The absorbed photon excites the electron, which can escape
only from a depth on the order of nanometers, so that it is the surface layer which is analyzed. By
measuring the kinetic energy of the photoemitted electron, we obtain information on the electronic
properties of the system. In an independent-particle (IP) picture (like DFT Kohn-Sham equations),
the kinetic energy of the emitted electron gives the energy ϵIPi of the state the electron was occupy-
ing before the interaction with the photon. In the photoemission spectrum, if the weakly interacting
picture is almost valid, this should give rise to a delta peak at this energy. In real experiments,
however, the actual spectra are much more complex than a series of delta peaks at energies ϵi

1.
Indeed, experimental photoemission spectra reveal peaks that are shifted, renormalized, and broad-
ened (thus having a finite width) compared to the IP ones. This is due to the many-body interactions
within the system, not captured by the almost IP approach, which results in what are known as

1Real photoemission spectra exhibit additional features, called satellites, which are due to the many-body nature
of the problem and are attributed to other excitations in the system induced by the absorbed photon. However, this
part will not be discuss in the present thesis.

27
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quasi-particle (QP) peaks. To put it simple, the emitted electron leaves a hole behind in its previous
state, causing the remaining electrons to relax and screen the newly-created positive charge. This
excited state2 has a finite lifetime, which is inversely related to the width of the QP peak: a delta
peak (zero width) corresponds to an infinite lifetime (as in the ideal IP picture), whereas a broader
peak indicates stronger many-body effects and a shorter lifetime. Therefore, the width of the QP
peak provides a measure of the interactions due to the presence of a hole: electrons of higher energy
tend to fill the hole, reflecting the system’s instability.
The N -electron system, originally in its ground state

∣∣ΨN
0

〉
with total energy EN

0 , is now excited

to a state with N − 1 electrons,
∣∣ΨN−1

i

〉
with energy EN−1

i , where i stands for the single-particle
state where the hole was created.

vacuum vacuum

EkEk

e-e-

hνEi
hν

Ei

a) b)detector

detector

Figure 3.1: Photoemission (a) and inverse photoemission (b) experiments. The electron kinetic
energy out of the material and its energy level in the material are marked as Ek and Ei respectively.
The energy of the absorbed (a), emitted (b) photon is hν.

Conversely, in an inverse photoemission, the reverse process occurs: an electron is absorbed by the
system, resulting in the emission of a photon. The system is then excited to a state ofN+1 electrons,
represented by the ket

∣∣ΨN+1
i

〉
with energy EN+1

i . Therefore, direct and inverse photoemission ex-
periments provide information about electron removal and addition energies, or, in other words, the
energies of the occupied and unoccupied states, ϵi,occ = EN

0 −EN−1
i and ϵi,unocc = EN+1

i −EN
0 , re-

2An excited state is any quantum state of a system that has a higher energy than a chosen starting point, usually
the ground state. The lifetime of the excited state is usually short: spontaneous or induced emission of a quantum
of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state,
returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower
energy level is often loosely described as decay and is the inverse of excitation. Long-lived excited states are often
called metastable.
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spectively. In the following section, we will illustrate how removal and addition energies of electrons
in a many-body interacting system are encoded in the so-called single-particle Green’s function.
Next, we introduce the concept of self-energy from a qualitative point of view. The self-energy,
denoted by Σ, theoretically includes all many-body interactions and depends on the energy of the
QP states, making its evaluation significantly more complex than the quantities used in the previous
chapter to model interactions. In general, Σ is a complex function; its real part provides the QP
energies, while its imaginary part gives the width of the QP peak. If the system is not allowed to
relax — meaning the hole is frozen and electrons cannot fall into it — the lifetime of the excited
state is assumed to be infinite. This is known as the static approximation to Σ, i.e. Im(Σ) = 0.
On the contrary, a dynamic Σ yields complex quasi-particle energies, whose imaginary parts are
related to the lifetimes of the associated excited states. A quantitative treatment of the self-energy
is presented in section 3.4.

3.2 The Green’s Functions Formalism

To introduce Green’s functions, we switch to a second quantization3 description of the many-
particles system. We limit the discussion to fermions and to zero-temperature formalism, consider-
ing the system at equilibrium. We introduce the fermionic creation and annihilation operators â†i
and âi, which satisfy the anticommutation4 rules {âi, âj} = {â†i , â

†
j} = 0 and {âi, â†j} = δij . As the

names suggest, these operators act on a fermionic state by adding or removing a particle, respec-
tively [32]. By expanding these operators into the position basis |r⟩, we obtain the field operators
5:

ψ̂(r) =
∑
i

φi(r)âi

ψ̂†(r) =
∑
i

φ∗
i (r)â†i

where φi(r) = ⟨r|i⟩ are single-particle wavefunctions. All many-particle operators in second quan-

tization, like total energy, density, etc., can be written in terms of the field operators ψ̂ and ψ̂†, and
the calculation of their quantum averages can be easily performed with the help of the anticom-
mutation relations6. Next, it is convenient to introduce the so-called Heisenberg representation, in
which both operators and wavefunctions have a time dependence [33]. Given the Hamiltonian Ĥ of

the system, the field operator in this representation reads ψ̂(r, t) = eiĤtψ̂(r)e−iĤt, which removes

a fermion at position r at time t. Similarly, ψ̂†(r′, t′) = eiĤt′ ψ̂†(r′)e−iĤt′ creates a fermion at r′ at
time t′. With these definitions, we can now introduce the single-particle Green’s function:

3Second quantization, also referred to as occupation number representation, is a formalism used to describe and
analyze quantum many-body systems. In this approach, the quantum many-body states are represented in the Fock
state basis, which are constructed by filling up each single-particle state with a certain number of identical particles.
The second quantization formalism introduces the creation and annihilation operators to construct and handle the
Fock states, providing useful tools to the study of the quantum many-body theory.

4We define the anticommutator {., .} of the fermionic operators A and B as {A,B} = AB +BA.
5Contrary to the previous chapter, here we will consistently denote operators using the symbol .̂ to avoid confusion.
6Now it holds {ψ̂(r), ψ̂(r′)} = {ψ̂†(r), ψ̂†(r′)} = 0 and {ψ̂(r), ψ̂†(r′)} = δ(r− r′).
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G(r, t; r′, t′) = −i
〈
ΨN

0

∣∣ T̂ [ψ̂(r, t)ψ̂†(r′, t′)
] ∣∣ΨN

0

〉
(3.1)

where
∣∣ΨN

0

〉
is the many-body ground state for a system of N interacting electrons, and T̂ is the

time-ordering operator. Here and in the following, we take ℏ = 1, neglect spin to simplify the
notation and we impose the normalization condition

〈
ΨN

0

∣∣ΨN
0

〉
= 1 is fullfilled. To clarify the

meaning of T̂ , we can rewrite Eq. (3.1) as:

G(r, t; r′, t′) =

{
−i
〈
ΨN

0

∣∣ ψ̂(r, t)ψ̂†(r′, t′)
∣∣ΨN

0

〉
t > t′

i
〈
ΨN

0

∣∣ ψ̂†(r′, t′)ψ̂(r, t)
∣∣ΨN

0

〉
t < t′

(3.2)

This form of the Green’s function is non-local both in space and time, and has the physical inter-
pretation of a single-particle propagator. Indeed, for t > t′, G(r, t; r′, t′) represents the probability
amplitude that a particle created at (r′, t′) will be annihilated at (r, t), describing the propagation
of a conduction electron. For t < t′, the Green’s function instead describes the propagation of a
hole, which can be seen as a fermion moving backward in time.
It is straightforward to show [32] that the ground-state expectation value of any single-particle
operator Ô can be written as:

⟨Ô(r)⟩ =

∫
drψ̂†(r)Ô(r)ψ̂(r) = −i lim

t′→t+
lim
r′→r

Tr[O(r)G(r, t; r′, t′)]

where Tr[...] is the trace of the matrix product and t+ is an infinitesimal time later than t, in order
to ensure the correct time ordering. In particular, we can express the ground-state expectation
value of the density operator n̂(r) as:

⟨n̂(r)⟩ =

∫
dr′ψ̂†(r′)δ(r− r)′ψ̂(r′) = −iG(r, t; r, t+) (3.3)

To summarize, G(r, t; r′, t′) is the single-particle Green’s function, describing the propagation of a
single fermion added to or subtracted from a system of N interacting particles. Although Eq. (3.1)
implies the loss of much detailed information about the ground state, the single-particle Green’s
function still contains the observable properties of greatest interest:

1. the expectation value of any single-particle operator in the ground state of the system, as
seen above,

2. the ground-state energy of the system7,

3. The excitation energies of the system.

The third point is discussed in details in the next section.

7For details, see [32]
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3.2.1 The Lehmann Representation

In this section, we delve deeper into the physical meaning of the single-particle time-ordered Green’s
function and establish the following points: (i) the poles of the Green’s function in the frequency
domain correspond to the electron addition and removal energies; (ii) the imaginary part of the
Green’s function, known as the spectral function A, is directly related to the measured photoemis-
sion spectra.
If we consider the case where there are no time-dependent external potentials, the system is station-
ary and G depends only on the time difference τ = t− t′. By inserting in Eq. (3.2) the complete set
of many-body excited states

∣∣ΨN±1
n

〉
, solutions of the fully-interacting Hamiltonian, and taking a

Fourier transform in time, we obtain the so-called Lehmann representation of the Green’s function:

G(r, r′, ω) =
∑
n

fn(r)f∗n(r′)

ω − ϵn + iη sgn(ϵn − µ)
(3.4)

where µ is the chemical potential and η an infinitesimal positive number, i.e. η → 0+. Furthermore,

fn(r) =

{〈
ΨN

0

∣∣ ψ̂(r)
∣∣ΨN+1

n

〉
ϵn > µ〈

ΨN−1
n

∣∣ ψ̂(r)
∣∣ΨN

0

〉
ϵn < µ

(3.5)

are the Lehmann amplitudes and

ϵn =

{
EN+1

n − EN
0 ϵn − µ > 0

EN
0 − EN−1

n ϵn − µ < 0
(3.6)

are the excitation energies for adding (ϵn − µ > 0) or removing (ϵn − µ < 0) a fermion from the
system.
This representation of G is extremely useful in clarifying one of the most important pieces of
information provided by the single-particle Green’s function. By examining the denominator of
Eq. (3.4), it is immediately apparent that the time-Fourier transform of G has its poles at the
single-particle excitation energies of the system (Fig. 3.2). Consider the case of adding an electron
to a material: as this electron propagates through the system, it will be surrounded by a positively
polarized region due to the electron-electron repulsion. The combination of the electron and this
induced polarization cloud can be thought of as a QP, specifically a quasi-electron in this context.
A similar reasoning applies to the case of electron removal, where the created QP is referred to
as a quasi-hole. The energies ϵn (3.6) and the corresponding Lehmann amplitudes fn (3.5) can
be approximately interpreted as the excitation energies and wavefunctions of these QPs. Such
interpretation is consistent to the simpler case of a system of independent particles, as the Kohn-
Sham auxiliary system. Indeed, by Fourier-transforming Eq. (3.4) in space, we obtain the form:

G(k, ω) =
∑
n

fnk f
∗
nk

ω − ϵnk + iη sgn(ϵnk − µ)
(3.7)

=
∑
nk

Gnk(ω)
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Figure 3.2: Schematic representation of the location of the poles of the time-ordered Green’s function.
The ionization potential is the energy required to remove an electron (I = E0

N − E0
N−1) from the

system, the electron affinity the energy required to add an electron (A = E0
N − E0

N+1). µ is the
chemical potential and the superscript 0 indicates the N-particle ground state

In the non-interacting system, the field operators connect only one state to the ground state, so
that the non-interacting Green’s function G0

k(ω) has only a single pole, namely:

G0
k(ω) =

fnk
ω − ϵnk − iη

+
1 − fnk

ω − ϵnk + iη

It is straightforward to demonstrate that in this case the ϵnk correspond to the energies of the single
particle levels ϕnk of Eq. (2.14), while the amplitudes fnk coincide with the occupation number of
the same states.
We now focus on the imaginary part of the single-particle Green’s function to obtain an important
quantity for the interpretation of spectroscopy experiments. Indeed, from the Lehmann represen-
tation of the Green’s function (3.4), we can define the spectral function as8

A(r, r′, ω) =
1

π
ImG(r, r′, ω)

The spectral functions are then real functions of ω, always positive, and related to the Lehmann
amplitudes of one-particle excitations. It should be noticed that the spectral function contains
the same information as G. Using the Cauchy integral representation, the Green’s function can
be recovered from the spectral function. When taking the contour as represented in Fig. 3.3, the
Green’s function G can be written in a compact form as

G(r, r′;ω) =

∫
C

dω′ A(r, r′, ω′)

ω − ω′

8For a general discussion on spectral functions, we refer the reader to Ref. [33].
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Figure 3.3: Integration contour C adopted in Eq. (3.8).

Similarly to what we have shown for the G (3.3), it can be shown that the ground-state electronic
density can be derived from A∫ µ

−∞
A(r, r′, ω) dω =

〈
ΨN

0

∣∣ ψ̂†(r)ψ̂(r)
∣∣ΨN

0

〉
= ⟨n̂(r)⟩

The spectral function plays a crucial role in the analysis and interpretation of spectroscopic exper-
iments. It encapsulates the essential information about the single-particle excitations in a system,
linking theoretical models with experimental measurements. This is made clear if we rewrite A for
a general diagonal element in reciprocal space:

Ak(ω) =
1

π

|Im Σnk(ω)|
[ω − ϵ0k − Re Σnk(ω)]2 + [Im Σnk(ω)]2

If we start by considering the non-interacting picture, where the self-energy Σ vanishes, the spectral
function consists of a series of δ-peaks centered at the non-interacting single-particle energies ϵ0k.
When we introduce interactions, the self-energy shifts the peaks by Re Σnk(ω) and broadens them
by Γnk = Im Σnk(ω). Due to the one-to-one correspondence with the non-interacting peaks, this
structure is called QP peak [33]. The quantity Γnk is also known as QP lifetime. A schematic
representation is provided in Fig. 3.4.
In the interacting case, we also observe the appearance of other peaks, called satellites, which arise
from the imaginary part of the self-energy. These are due to additional excitations that occur
when a particle is added to or removed from the system, such as plasmons and atomic-like exci-
tations. If these satellite peaks have too much weight in the spectrum, the single-particle picture
is no longer valid, and we describe the system as strongly correlated. The experimental analogous
that allows to measure such spectral functions (and hence the QP levels of the system) are direct
and inverse photoemission, shown in Fig. 3.1. Experimental measures of the full band structure
of a system can be carried out within Angle-Resolved Photoemission Spectroscopy (ARPES) [34,35].
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Figure 3.4: Effects of the many-body self-energy: the delta-like independent-particle peak (ϵ0) is
shifted (ϵ0 → ϵ0+Re Σnk(ω)) and its weight is redistributed between the QP peak (ϵQP ) and satellites.

3.2.2 The Dyson Equation for G

From the equations of motion (EOM) of ψ̂(r, t) and ψ̂†(r′, t′) [36], an EOM for G can be derived9 [37][
i
∂

∂t1
− h(1)

]
G(1; 2) = δ(1; 2) − i

∫
v(1; 3)G2(1, 3; 2, 3+) d3 (3.8)

where we introduce the compact notation (rj , tj) → j. In this expression, we find

ĥ = −∇2

2
+ V̂ext

the one-particle term of the Hamiltonian and

v(1; 2) = δ(t1 − t2)
1

|r1 − r2|

v(1, 2) the Coulomb interaction. G2 is the two-particle Green’s function, defined as

G2(1, 2; 3, 4) = −
〈
ΨN

0

∣∣ T̂ [ψ̂(1)ψ̂(2)ψ̂†(4)ψ̂†(3)
] ∣∣ΨN

0

〉
(3.9)

The equation for the one-particle Green’s function G, Eq. (3.8), involves the two-particle Green’s
function G2, which describes the creation and annihilation of pairs of particles. Similarly, the EOM
for G2 can also be derived, and one finds that G2 depends on G3, and so on. This procedure leads
to new equations for the Green’s functions that depend on the Green’s functions themselves in a
non-linear way. The solutions are therefore non-perturbative in the interaction strength v. This
can be understood as follows: the propagation of the first electron (described by G) can create

9To be precise, we obtain two coupled EOMs for G, with the second one being equivalent but involving the time
derivative acting on the left-hand side. Additionally, these differential equations are meaningful only if they are
accompanied by an initial condition, which in this case is G0(1, 2) = 1.
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an electron-hole pair, which can in turn induce a cascade of other electron-hole pairs. Solving
the equations for all these processes is as complex as solving the full many-body problem, thus
necessitating perturbation theory. If the goal is to calculate one-particle properties, the strategy is
to find a good approximation for G2 in terms of G. For calculating two-particle properties, such as
optical properties, one should find approximations for G3 in terms of G2. The explicit calculation
of the exact Green’s function is not possible for the system of interest (real solids). The solution to
this problem relies in Wick’s theorem [38] and Feynman diagrams [32,39], allowing us to compute an
approximate expression of G. This forms the basis of MBPT. In the case of a system of interacting
electrons, using this theory allows for the Green’s function to be obtained with high accuracy.
To obtain an expression for G2 in terms of G, one can employ Schwinger’s functional-derivative
method [32]. This method involves the introduction of a perturbing, time-dependent external
potential Uext. This perturbation acts as a tool for differentiation, and at the conclusion of the
differentiation process, Uext is typically reduced to a static external potential Vext.
Let χ denote the response of the density to changes in the external potential, or in other words,
the polarizability of the system

χ(1; 2) =
δn(1)

δUext(2)

We define an effective potential Veff that includes the external potential Uext and the Coulomb
potential created by the induced charge, VH, as

Veff(1) = Uext(1) + VH(1)

with

VH(1) =

∫
v(1; 3)χ(3; 2)Uext(2) d2d3

In contrast to the previous chapter, this effective potential does not include an XC contribution.
The polarizability χ is typically referred to as the reducible polarizability, where “reducible” indicates
that the differentiation is performed with respect to Uext and not Veff . Therefore, we define the
irreducible polarizability10 as

P =
δn(1)

δVeff(2)
= −i δG(1; 1+)

δVeff(2)
(3.10)

where we have used the relation between the density and the Green’s function, Eq. (3.3). The
dielectric function ε can also be expressed in terms of the effective potential as

ε−1(1; 2) =
δVeff(1)

δUext(2)
= δ(1; 2) +

∫
v(1; 3)χ(3; 2) d3 (3.11)

Combining Eqs. (3.10) and (3.11) and using the chain rule we obtain the geometric series, we obtain
the inverse

10Sometimes defined as χ̃.
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ε(1; 2) = δ(1; 2) −
∫
v(1; 3)P (3; 2) d3

The functional derivative of the Green’s function with respect to the external potential can be
written as [32]

δG(1; 2)

δUext(3)
= G(1; 2)G(3; 3+) −G2(1, 3; 2, 3+) (3.12)

This last relation allows to eliminate the two-particle Green’s function dependence in Eq. (3.8).
Indeed, by inserting Eq. (3.12) in Eq. (3.8), we find a new expression for the EOM of G

[
i
∂

∂t1
− h(1)

]
G(1; 2) = δ(1; 2) − i

∫
v(1; 3)G(3; 3+)G(1; 2) d3 + i

∫
v(1+; 3)

δG(1; 2)

δUext(3)
d3 (3.13)

It must be noticed that −iG(3, 3+) is the electronic density n(3) and therefore the term −i
∫
v(1, 3)G(3, 3+) d3

is simply the Hartree potential. If we now define the self-energy Σ as

i

∫
v(1+; 3)

δG(1; 2)

δUext(3)
d3 =

∫
Σ(1; 3)G(1; 2) d3 (3.14)

then the EOM (3.13), can be rewritten as follows[
i
∂

∂t1
− h(1) − VH(1)

]
G(1; 2) = δ(1; 2) −

∫
Σ(1; 3)G(1; 2) d3 (3.15)

Since the Hartree term is local, it can be included in the single-particle Hamiltonian, that is ĥ0 =
−∇2/2 + V̂ext + V̂H = ĥ + V̂H . Let us now define the non-interacting Green’s function G0 as the
Green’s function obtained using as Lehmann amplitudes the wave functions ϕi and energies ϵ0i . The
EOM of G0 is: [

i
∂

∂t1
− h0(1)

]
G0(1; 2) = δ(1; 2) (3.16)

Combining Eqs. (3.15) and (3.16) it can be seen that the link between G0 and G is

G(1; 2) = G0(1; 2) +

∫
G0(1; 3)Σ(3; 4)G(4; 2) d3d4 (3.17)

which is the so-called Dyson equation [40] for G, often expressed symbolically as

G = G0 +G0ΣG

The irreducible self-energy Σ implicitly contains all the many-body interaction terms of the problem.
Eq. (3.17), also depicted in Fig. 3.5 using Feynman diagrams [32], is fundamentally important
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because it allows for the description of G in terms of perturbative expansions, where the lowest
order is represented by the non-interacting Green’s function G0. The benefit of using perturbative
expansions is that we can truncate the series at a desired order, thus including only the necessary
physics without needing to solve the full problem to obtain the properties of interest. Eq. (3.17) is an
integral equation with the self-energy Σ as the kernel, which encapsulates the effective coupling (the
Coulomb interaction v). The self-energy Σ can also be treated within the perturbative expansion
framework [32]. We will discuss the self-energy in more detail in the following sections.

Figure 3.5: Dyson equation for G in terms of Feynman diagrams. We can interpret this expansion
in terms of a bare propagation G0 and an effective interaction Σ.

3.3 The Quasi-Particle Concept

By taking the time Fourier transform of Eq. (3.15), using the Lehmann representation (3.4) for G,
and considering the limit ω → ϵn (while replacing fi(r) with ϕi(r)), we obtain a reformulation of
the Dyson equation

ĥ0(r)ϕi(r) +

∫
Σ(r, r′, ϵi)ϕi(r

′)dr′ = ϵiϕi(r) (3.18)

This is a Schrödinger-like equation, known as the quasi-particle equation [33]. When we compare
Eq. (3.18) to the Kohn-Sham equation (2.14), we see that they have the same form except for the
self-energy replacing the XC potential of DFT11. This comparison makes the interpretation of the
Lehmann amplitudes clear: they are the quasi-particle wavefunctions.
In condensed matter physics, the concept of QP is a powerful tool for understanding the complex
interactions within many-body systems. Introducing QPs allows us to partially retain the one-
particle picture, as each QP associated with an electron. However, electrons in a solid are not
independent particles; the Coulomb interaction between them is screened by the presence of all
other electrons. This screening reduces the Coulomb interaction due to the dielectric constant of
the medium, ε. When an electron is injected into a sample, the repulsive Coulomb interaction
creates a polarization cloud around the additional electron (see Fig. 3.6). This occurs because the
Coulomb potential of the electron repels surrounding electrons, resulting in an effective positive
charge density appearing around the electron. Thus, in this case, a QP consists of an electron and
its screening cloud. The electron and the cloud interact via a screened Coulomb potential, often
called W , which is smaller than the bare one v (see Appendix A)

W (1; 2) =

∫
d3 ε−1(1; 3)v(2; 3) (3.19)

11Note that we can recover the KS equations (2.14) by taking Σ(r, r′, ω) = Vxc[n(r)]δ(r − r′), which express the
locality of Vxc
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W is a dynamic quantity, in contrast to v, since it is frequency-dependent. Fig. 3.6 represents W
as the effective potential at r′ induced by the QP at r. W is then the combination of the potential
of the bare electron and its screening cloud. The same picture can be used for holes but, in this
case, an effective negative charge screens the bare interaction between holes.

r' +
+ +

+
+

-

Pind(r,r'')

W(r,r')

v(r,r')
v(r'',r')

“quasiparticle”

Figure 3.6: Simplified representation of the quasiparticle and screening potential W .

3.4 The Self-Energy

Eq. (3.18) can be separated into two parts: one part is given by the non-interacting Hamiltonian ĥ0,
where electrons interact only via the Hartree term, and the other part contains Σ, which accounts
for all the many-body XC interactions representing all electron-electron interactions beyond those
included by the Hartree potential. In summary, the self-energy is the effective potential that an
additional particle experiences due to the polarization induced by its propagation.
It should be noticed that Eq. (3.18) is not linear in ϵi, and Σ is a function of ϵi itself. In addition, the
self-energy is non-local and non-Hermitian. Consequently, the wavefunctions ϕi are not orthogonal,
and the energies ϵi are in general not real. Indeed, the imaginary part of ϵi accounts for the
finite lifetimes of the QP. The real part of ϵi defines the electron addition or removal energy, thus
representing the energies used to describe the band structure. Starting from Eq. (3.14), it can be
shown that Σ has the following expression:

Σ(1; 2) = −i
∫
v(1+; 3)G(1; 4)

δG−1(4; 2)

δUext(3)
d3d4 (3.20)

Thus, to calculate the excitation energies ϵi, approximations to Σ are needed. In this section, we
discuss two common approximations for Σ, while in Sec. 3.5.1, we will introduce the GW approxi-
mation, which is widely used in the context of MBPT and is central to this thesis.
The simplest approximation for the self-energy is to neglect it entirely by setting Σ = 0. In the con-
text of Eqs. (3.15) and (3.18), this approximation corresponds to a classical system where particles
interact only through the Hartree potential. This is thus referred to as the Hartree approximation.
A first approach to introduce quantum effects through the self-energy is to approximate Σ to first
order in the Coulomb potential:

Σx(1; 2) = iG(1; 2)v(1+; 2) (3.21)
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Here, Σx is known as the Fock self-energy and it accounts for the exchange between indistinguishable
electrons. The standard expression for the Fock exchange can be derived from definition Eq. (3.21)
using the real-space representation of the Green’s function

Σx(r1, r2) = −
occ∑
i

ϕi(r1)ϕ∗i (r2)v(r1, r2) (3.22)

It is important to note that:

• In Eq. (3.22), Σx is obtained by summing over occupied states, which can be represented as∑
i Θ(µ − ϵi), where Θ is the step function. In frequency space, static self-energies depend

only on occupied states because terms with negative times (removal excitations) are retained
in G.

• The Fock self-energy is static, resulting in purely real energies for the system. Therefore,
there is no distinction between Lehmann amplitudes and one-particle wavefunctions, and an
extra particle in the system represents an excited state with an infinite lifetime.

• The interaction v is assumed to be instantaneous.

When the electron interactions are described using the Fock self-energy in addition to the Hartree
potential, the approximation is known as Hartree-Fock (HF). Such self-energy is static and un-
screened, i.e. does not consider dynamical effects like charge oscillations and retarded responses to
the potential. It is well-known [41] that the Hartree-Fock eigenvalues are not accurate approxima-
tions for electron energies in a solid. Specifically, Hartree-Fock tends to overestimate band gaps
significantly compared to DFT. This discrepancy highlights the need to include additional terms in
the self-energy. While in HF exchange effects are fully considered, correlation effects are completely
neglected. The importance of correlation becomes evident when considering the concept of QP and
the screening potential W discussed in the previous section.

3.5 Hedin’s Equations

So far, we have demonstrated the connection between the Green’s function of a system, the associ-
ated QP energy levels, and their experimental counterpart. However, we have not yet proposed a
practical scheme to obtain these quantities. This task is indeed very challenging because it requires
the knowledge of the exact self-energy to be inserted in Eq. (3.18). Additionally, the complexity
is increased by the fact that the self-energy is dynamical, meaning that it has a frequency de-
pendence. More than 50 years ago, Lars Hedin proposed an iterative procedure to address this
problem. This procedure starts from a closed (self-consistent) set of Dyson’s equations, known as
Hedin’s equations [42]:

Σ(1; 2) = i

∫
G(1; 4)W (1+; 3)Γ̃(4, 2; 3) d3d4 (3.23)

G(1; 2) = G0(1; 2) +

∫
G0(1; 3)Σ(3; 4)G(4; 2) d3d4 (3.24)
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Γ̃(1, 2; 3) = δ(1; 2)δ(1; 3) +

∫
δΣ(1; 2)

δG(4; 5)
G(4; 6)G(7; 5)Γ̃(6, 7; 3) d4d5d6d7 (3.25)

P (1; 2) = −i
∫
G(1; 3)G(4; 1)Γ̃(3, 4; 2) d3d4 (3.26)

W (1; 2) = v(1; 2) +

∫
v(1; 3)P (3; 4)W (4; 2) d3d4 (3.27)

We have introduced here the irreducible vertex function

Γ̃(1, 2; 3) = −δG
−1(1; 2)

δVeff(3)

responsible for the introduction of two-particle effects in the irreducible polarizability P12. Here,
“irreducible” still highlights that the differentiation is performed with respect to Veff .
A formal proof of these equations is beyond the scope of this introduction, and we refer to the rel-
evant literature for their derivation [33, 41, 42]. Hedin’s equations are exact, meaning they exactly
describe the many-body problem. Unfortunately, the complexity of these equations, and partic-
ularly Eq. (3.25), prevents us from solving them exactly, necessitating analytical approximations.
Specifically, we start from the functional form of the self-energy Σ in terms of the Green’s function
G. By beginning with an approximate form of Σ, it is possible to iterate along the so-called Hedin’s
pentagon, as shown in Fig. 3.7, and solve the equations self-consistently. The final step of this cyclic
iterative procedure is determined by the physics we aim to describe.

Figure 3.7: The Hedin pentagon is a suggestive representation of Hedin’s equations, Eqs. (3.23)-
(3.27). In the corners, we have the fundamental quantities and along the sides the equation linking
them in a closed scheme.

12Also denoted as χ̃.
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3.5.1 The GW Approximation

According to Hedin’s equations, the self-energy is symbolically written Σ = iGW Γ̃. Assuming that
W is small, one can expect that retaining only the first-order perturbation in W should be accurate.
This straightforward approach to solve the problem was suggested by Hedin in his seminal work [42].
It involves a single iteration over Hedin’s pentagon (Fig. 3.7), starting from Σ = 0 and neglecting
vertex corrections, i.e. Γ̃(1, 2; 3) = δ(1; 2)δ(1; 3). Practically, this is done by skipping the vertex
part in the pentagon and going directly from G to P . Following the loop in Fig. 3.7, we obtain the
first order expression of Eqs. (3.23) - (3.27)

Σ(1; 2) = 0 (3.28)

G(1; 2) = G0(1; 2) (3.29)

Γ̃(1, 2; 3) = δ(1; 2)δ(1; 3) (3.30)

P (1; 2) = −iG(1; 2+)G(2; 1+) = P0(1; 2) (3.31)

W (1; 2) = v(1; 2) +

∫
v(1; 3)P0(3; 4)W (4; 2) d3d4 = W0(1; 2) (3.32)

Starting from Σ = 0 results in the Green’s function being the independent-particle one. This, in
turn, leads to the so-called random-phase approximation (RPA) for the polarizability P0 (3.31) and
the screening W0 (3.32). We refer the reader to Appendix A for more details. Finally, we complete
the first iteration of the loop to obtain a new approximation for the self-energy Σ

ΣGW(1; 2) = iG(1; 2)W (1+; 2) = iG0(1; 2)W0(1+; 2) (3.33)

Thus, the self-energy is then expressed as the product of G0 and W0. Due to this concise form,
this approximation is called the GW approximation, whose diagrammatic expression is depicted
in Fig. 3.8. Specifically, a single iteration on the Hedin’s pentagon is properly called (single-shot)
G0W0. More advanced self-consistent GW calculations can be performed [43, 44], but usually the
G0W0 method is good enough to describe the QP band structure of a material within the accuracy
of tens of meV.

Figure 3.8: Diagrammatic representation of the self-energy (3.33) in the GW approximation.

The most important difference from the HF approximation is that, in the GW approximation,
polarization effects are taken into account, which screen the propagation of the extra particle
(electron or hole). GW also considers the relaxation of the system, unlike HF. As a result, the
self-energy is dynamic, and the QP lifetime, given by the imaginary part of the QP energies, is
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finite. When compared to the Fock self-energy in Eq. (3.21), we can see that, in addition to the
static exchange term Σx, the GW self-energy ΣGW has a dynamic part originating from W . We
can separate ΣGW into two terms corresponding to the exchange part, Σx (as in Eq. (3.21)), and
the correlation, Σc, defined as

Σc(1; 2) = iG0(1; 2)Wp(1+; 2)

where Wp, the polarizable part of W0, is simply

Wp = W0 − v

and accounts for correlation effects. Wp carries all the dynamic effects of Σ.
To summarize, the GW approximation is based on the assumption that the terms proportional
Wn, with n > 1, which appears in the vertex function (3.25), are negligible compared to the linear
contribution in W, as a result of the electronic screening of the bare Coulomb interaction. The GW
approximation generally yields electronic properties in very good agreement with experiments for a
wide range of materials [45]. Commonly, G0W0 calculations are based on an LDA or GGA result as
a starting point. In other words, they use the KS energies and wavefunctions as the non-interacting
ones. We will talk more about this topic in the next sections.

3.6 Methods and Implementations in MBPT

3.6.1 The Plasmon-Pole Approximation (PPA)

One of the major computational challenges in calculating self-energy is computing the frequency-
dependent screened interaction. Due to its erratic behavior along the real axis, a very large number
of real frequencies are typically needed to achieve a converged result. However, it is reasonable
to expect that approximate models, which can capture the main physical features of the screened
interaction, could provide sufficiently accurate results while significantly reducing computational
effort. This is precisely what we will show in this section.
We start from the definition of the GW self-energy (3.33) in the frequency space, that is

ΣGW(ω) = −
∫
dω′

2πi
eiω

′0+G(ω + ω′)W (ω′)

The non-interacting Green’s function G0 used in the approximation is not the Hartree one, but
the one built on the non-interacting KS single-particle orbitals ϕKS

nk , GKS
0 . This is a convenient

choice as in the ϕKS
nk there is already an attempt to include XC effects, encoded in Vxc potential.

As discussed in the previous section, the self-energy can be split into the (Fock) exchange part, Σx,
and in the frequency-dependent correlation part, Σc. The diagonal elements read13

Σnk = ⟨nk|Σx |nk⟩ + ⟨nk|Σc |nk⟩

13Here, we denote the KS orbitals ϕKS
nk as |nk⟩
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and can be expanded in PWs as

Σx
nk = −

occ∑
m

∫
dq

(2π)3

∑
G

v(q + G)|ρnm(k,q,G)|2fm,k−q

for the first term14 and

Σc
nk(ω) = i

Nb∑
m

∫
dq

(2π)3

∑
GG′

v(q + G)ρnm(k,q,G)ρ∗nm(k,q,G′)

×
∫
dω′G0

m,k−q(ω − ω′)ε−1
GG′(q, ω

′)

(3.34)

for the second term15. The quantities

ρnm(k,q,G) = ⟨nk| ei(q+G)·r |mk− q⟩

are the dipole matrix elements of orbital pairs, also known as screening matrix elements. We also
note that, by definition, WGG′(q, ω) = ε−1

GG′(q, ω)v(q+G′) is the screened Coulomb interaction (see
Appendix A). It is clear that the screened potential, and thus Σc, can be computed once the dynam-
ical screening matrix ε−1

GG′(q, ω) is known. This matrix can be computed using the Dyson equation
for the reducible polarizability χ, using the RPA (see Appendix A for more details). Usually, the
integral in Eq. (3.34) is computationally demanding due to the large number of frequencies required
for numerical integration. This integral can be evaluated analytically using well-known model, the
plasmon-pole approximation (PPA) [46]. This approximation models the inverse screening matrix
ε−1
GG′(q, ω) with a single-pole function, given by:

ε−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − ω̄2
GG′(q)

(3.35)

This corresponds to assigning all the spectral weight of the dielectric function at a plasmon exci-
tation pole. ΩGG′(q) and ω̄GG′(q) are parameters16 that can be obtained by imposing different
constraints [47], which distinguish different “flavors” of the PPA. This approximation is imple-
mented in the YAMBO code [48,49], used in this thesis to compute MBPT.
It is important to note that while the PPA reduces the computational effort required to compute
ε−1
G,G′(q, ω), it remains a formidable task when simulating large systems with many atoms and/or

large cell sizes. The dielectric matrix can be very large, and inverting it twice for each q point
is computationally demanding. However, the PPA has the significant advantage of avoiding the
need to compute the inverse of the dielectric matrix at multiple frequency points, thus making
the frequency integrals amenable to analytic expression. The PPA typically performs very well for
semiconductors. This success can be attributed to the fact that the self-energy calculation involves
an integral over frequencies. If the model accurately captures the average characteristics of the true

14In the case of Σx, the sum runs over occupied states only.
15In the case of Σc, the sum runs over all bands, including the unoccupied ones.
16For instance, they are matrices.



44

dielectric function, the results remain highly accurate. However, a significant limitation of the PPA
is that it cannot be used to calculate QP lifetimes, as the self-energy is real within this approx-
imation. Additionally, some systems may exhibit a shape for ε−1

G,G′(q, ω) that deviates from the
form assumed in the PPA. For example, in metals, the dielectric function often has a broader peak,
and in more complex materials or interfaces, multiple peaks may be present, causing the PPA to fail.

3.6.2 The Perturbative Approach

In the G0W0 approximation (often referred to as “one-shot GW”), mentioned in Sec. 3.5.1, the
self-energy operator is usually constructed using the DFT eigenvalues and eigenfunctions. The QP
energies are then computed using first-order perturbative correction to the DFT energies.
The quasiparticle equation (3.18), computed at the QP energy ϵQP

nk , which we can explicitly rewrite
as [

−ℏ2∇2

2m
+ VH(r) + Vext(r)

]
ΨQP

nk (r) +

∫
Σ(r, r′, ϵQP

nk )ΨQP
nk (r′)dr′ = ϵQP

nk ΨQP
nk (r),

and the Kohn-Sham equation[
−ℏ2∇2

2m
+ VH(r) + Vext(r)

]
ϕKS
nk (r) + Vxc(r)ϕKS

nk (r) = ϵKS
nkϕ

KS
nk (r)

look very similar, as both are single-particle equations with an XC term. Following Hybertsen and
Louie [50], if we consider the KS wavefunctions as a good approximation of the QP wavefunctions,

ΨQP
nk (r) ≃ ϕKS

nk (r)17, we can interpret the non-local and energy-dependent operator Σ̂ − V̂xc as

a perturbation of the KS Hamiltonian. As a result, we can express the QP energies ϵQP
nk using

first-order perturbation theory. This gives us the following expression18:

ϵQP
nk ≃ ϵKS

nk + ⟨nk|Σ(ϵQP
nk ) − Vxc |nk⟩ (3.36)

Given that this approach involves only the diagonal elements of the self-energy, solving this equation
is less computationally demanding compared to finding the poles of the fully-interacting Green’s
function. This approximation is valid if the self-energy’s diagonal elements are dominant in the
basis of the DFT orbitals, which is generally the case except in some special situations [44, 51],
where other approaches are needed. This is particularly true for isolated atoms or molecules, where
the KS orbitals do not decay sufficiently at large distances.
Since the electron self-energy in Eq. (3.36) depends on the QP energies, this would, in principle,
require a self-consistent solution. In practical calculations, this energy dependence is simplified by
considering the linearized self-energy in the vicinity of the KS eigenvalue. This approximation is
given by:

Σ(ϵQP
nk ) ∼ Σ(ϵKS

nk ) +
∂Σ(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵKS

nk

(ϵKS
nk − ϵQP

nk ) (3.37)

17For the sake of simplicity, we will use the notation |nk⟩ for the wavefunctions ϕKS
nk (r).

18Implicitly, we rewrite Vxc(r)ϕKS
nk (r) =

∫
drVxc(r′)ϕKS

nk (r
′)δ(r− r′)
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Figure 3.9: Schematic depiction of the G0W0 perturbative approach on the Hedin’s pentagon.

In this way, the self-energy and its first derivative need to be computed only once, in correspondence
of the KS energy. If we also define the renormalization factor Znk as

Znk =

[
1 − ⟨nk| ∂Σ(ϵ)

∂ϵ

∣∣
ϵ−ϵKS

nk

|nk⟩
]−1

(3.38)

by inserting Eq. (3.37) in Eq. (3.36) and using (3.38), we finally obtain an expression for the
self-energy corrections to the DFT band structure at the G0W0 level of approximation

ϵQP
nk = ϵKS

nk + Znk ⟨nk|Σ(ϵKS
nk ) − Vxc |nk⟩ (3.39)

Eq. (3.39) is the expression used in this thesis to evaluate QP corrected electronic bands starting
from DFT eigenenergies. We emphasize that this approach is reasonable if the KS states obtained
within DFT can be considered good approximations of the QP wavefunctions. This heavily depends
on the choice of the XC functional used, as discussed in Sec. 2.3.4. However, if this is the case,
many-body effects encoded in the self-energy operator can be properly included by simply adding
to the DFT energies ϵKS

nk the expectation value of the operator Σ̂ − V̂xc in the corresponding KS
states.
To summarize, the G0W0 calculations present in this Thesis follow this scheme:

• an initial DFT ground-state calculation is performed to obtain the input wavefunctions and
energies, to construct the non-interacting single-particle Green’s function GKS

0 ,
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• GKS
0 is used to compute the independent-particle irreducible polarizability19 P0(1; 2) = −iGKS

0 (1; 2+)GKS
0 (2; 1+),

• the microscopic dielectric matrix is computed and inverted (see Appendix A),

• the inverse macroscopic dielectric matrix is obtained for the full frequency range using the
PPA, and the screened interaction W0 is evaluated as in Eq. (3.19), within RPA,

• the expectation value of the self-energy calculated at the KS energies and its first derivative
are computed as ΣG0W0(1; 2) = iGKS

0 (1; 2)W0(1+; 2),

• the self-energy is used in Eq. (3.39) to compute the QP corrections to the KS eigenvalues.

The whole procedure is depicted schematically in Fig. 3.9. All integrals over the scattering vectors
q in the BZ are numerically discretized using a uniform Monkhorst-Pack mesh to sample the BZ.
QP corrections are highly sensitive to the q-sampling (closely related to the k-sampling) of the BZ,
and achieving properly converged results typically requires much denser grids compared to those
used in self-consistent DFT calculations.

3.6.3 Self-Consistent GW

Sometimes, the one-shot G0W0 approximation can yield poor results, particularly for compounds
with electrons in d orbitals or strongly localized systems (as molecules). The main reason behind
this failure is that the DFT starting point with local or semi-local XC functionals may give a band
gap too small compared with the experimental one, and a G0W0 calculation is not able to correct
this error. In order to overcome this issue, a possible solution is to use as starting point a hybrid
functional, or alternatively to solve the GW equations in a self-consistent manner20. In this ap-
proach, the QP eigenvalues and wavefunctions obtained from the previous cycle are used in each
iteration. For the first iteration, the LDA/GGA eigenvalues and eigenfunctions are employed.
Fully self-consistent GW calculations are generally challenging to implement, may sometimes yield
incorrect results, and are practically computationally prohibitive for most realistic materials. How-
ever, for many systems, DFT wavefunctions are already quite good, and self-consistency on eigen-
values only can be sufficient (see Ref. [53]). This self-consistency is usually performed either for G
only or for both G and W . Generally, this procedure results in larger band gaps and can significantly
reduce the dependency of the GW results on the choice of the DFT functional.

3.6.4 GW Calculations in Low-Dimensional Systems

We now address fundamental aspects of QP calculations in low-dimensional systems, which consti-
tute the focus this work.
In DFT calculations for low-dimensional materials, low-dimensional k-grids are typically used, such
as N × N × 1 for a 2D sheet oriented perpendicular to the z direction. This choice can lead to
numerical issues in the convergence of many-body results due to the divergence of the Coulomb
potential at small q, which appears in all key equations. To address this issue, the YAMBO code
employs the so-called Random Integration Method (RIM), which utilizes Monte Carlo integration

19Notice that, in this approximation for Eq. (3.31), we are substituting the interacting Green’s function G with
the non-interacting one, G0

20It has been demonstrated that, to correct this issue, vertex corrections should in principle be considered [52].
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with randomly selected q-points. For example, as shown in Eq. (3.21), the exchange self-energy
diagonal matrix element is given by:

⟨nk|Σx |nk⟩ = −
∫

dq

(2π)3

∑
G

4π

|q + G|2
|ρnm(k,q,G)|2fm,k−q

Assuming that the integrand is a smooth function of momentum, the integral can be approximated
as

⟨nk|Σx |nk⟩ ≃
∑
qi

∑
G

F (qi,G)

∫
sBZ(qi)

dq

(2π)3
4π

|q + G|2

where the small BZ (sBZ) relative to a given qi-point are the BZs of the momenta lattice vectors.
They are chosen in such a way to cover the whole BZ. In the RIM run-level, the code calculates
the integrals of the symmetrized Coulomb potential∫

sBZ(qi)

dq

(2π)3
4π

|q + G||q + G′|

In a PWs basis set framework, low-dimensional materials are represented using a supercell tech-
nique, which involves a 3D crystal characterized by a unit cell with a size L along the non-periodic
direction(s). This size must be sufficiently large to avoid unphysical interactions between periodic
images of the system. In DFT calculations, these spurious interactions can be mitigated by choos-
ing relatively small values of L; generally, a vacuum region of 12 − 20 Å between periodic copies
is sufficient to decouple periodic images of the material due to the short-range nature of the XC
functional Vxc. However, because the bare Coulomb interaction is long-ranged, GW calculations
often require impractically large supercells along the non-periodic direction(s) to ensure that peri-
odic repetitions are not coupled by Coulomb interactions. To address this issue, a real-space cutoff
for the Coulomb potential can be used. As discussed in detail in Refs. [54,55], this involves defining
the electron-electron potential as:

v̄(r) =

{
v(r) if r ∈ S

0 otherwise

i.e. the Coulomb interaction is manually set to zero outside of a region space S of choice. Usually,
this region is chosen based on the symmetry of the system (spherical for 0D systems, cylindrical
for 1D, etc.) In this way, properly converged QP corrections can be obtained using supercells
with length L along the non-periodic direction(s) which are comparable to those used in DFT
calculations.
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Optical Properties

In absorption experiments, unlike in photoemission experiments, the incident photons are absorbed
by the material, transferring their energy to excite electrons from occupied to unoccupied states. To
accurately predict the measured optical spectra, it is essential to account for the Coulomb interaction
between the excited electrons and the holes they leave behind. In other words, the many-body neutral
electronic excitations, denoted as

∣∣ΨN
0

〉
→
∣∣ΨN

i

〉
, can be conveniently described using electron-

hole pairs, which are new QP states known as excitons. When the Coulomb interaction between
electrons and holes is strong, bound excitons can form, leading to optical transitions at energies
below the electronic gap. These excitonic effects not only create new states below the gap but also
alter the intensity of optical peaks compared to what is predicted by the independent quasi-particle
approach. To accurately describe the optical spectra, it is necessary to solve a two-particle effective
Hamiltonian, which, in the framework of MBPT, is known as the Bethe-Salpeter Equation. The
formal derivation of this equation will be introduced in the following sections.

3.7 Light-Matter Interaction

When light interacts with a solid, photons excite electrons, causing transitions to excited states.
In this section, we will review the semi-classical theory of a solid’s response to an electromagnetic
field. For simplicity, we start by considering a single-particle Hamiltonian.
An electromagnetic field is generally described by a scalar potential ϕ and a vector potential A.
Electrodynamics allows a certain degree of freedom in specifying the potentials (ϕ,A), called gauge
freedom. For our discussion, we can choose the Coulomb gauge, which imposes ∇ · A = 0 and
ϕ = 0. In the presence of an electromagnetic field, the kinetic energy operator of an electron (p2/2)
is replaced by

1

2

[
p− 1

c
A(r, t)

]2
The vector potential A can generally be treated as a small perturbation to the electrons in the
solid. Consequently, the quadratic term A(r, t)2, allowing A to be treated as a linear perturbation.
Within this approximation, the one-electron Hamiltonian h can be separated into a term h0, which
describes the system without an electromagnetic field, and a perturbation term h′, which includes
the interaction between the electron and the field.
The vector potential of a field of frequency ω has the form

A(r, t) = A1(r, t) + A∗
1(r, t)

with

A1(r, t) = Ae0e
iq·r−ωt

where A is the amplitude and e0 is the polarization vector, perpendicular to the propagation vector
q. The electric field is related to the vector potential by
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E(r, t) = −1

c

d

dt
A(r, t)

Therefore, if we write the electric field in the form E = E1 + E∗
1, we have the following definition

for E1

E1(r, t) =
iω

c
Ae0e

iq·r−ωt (3.40)

In addition, we can define the electric displacement vector D(r, t) as

D(r, t) = εM(ω)E1(r, t) + ε∗M(ω)E∗
1(r, t) (3.41)

where εM(q, ω) is the macroscopic dielectric function of the material and it is generally a complex
function, i.e. εM = ε1 + iε2.
To relate the dielectric function with the quantum states of the electron in the solid, we use the
average rate of energy density loss (energy per unit volume, per unit time) from an electromagnetic
field in a medium with dielectric function εM(q, ω). This rate of energy loss is defined as:

1

4π

〈
E · dD

dt

〉
=

ω

2π

∫ 2π/ω

0

(
E · dD

dt

)
=

1

2πc2
|A|2ω3ε2(q, ω) (3.42)

where we have used Eq. (3.40) and (3.41) and the definition of time average over an oscillation
period 2π/ω.
According to time-dependent perturbation theory, the probability of a transition between an initial
state |i⟩ and a final state |f⟩ due to the perturbation h′ is given by21:

dWif (ω)

dt
=

2π

c2
| ⟨f |A(rf , t) · pi |i⟩ |2δ(ϵf − ϵi − ω)δσi,σf

(3.43)

The states |i⟩ and |f⟩ and the energies ϵi and ϵf are eigenfunctions and eigenstates of the many-
body Hamiltonian H0 =

∑
j h0,j · σi, where the σf are the spin states and the delta function

ensures the energy conservation in the transition. Since the absorbed photon has a frequency ω,
this corresponds to a loss rate of (dW/dt)ω . Summing Eq. (3.43) over all possible initial and final
states, introducing the occupation of every state through the Fermi distribution f(ϵ), we have the
expression of the rate of energy loss per unit volume

ω

Ω

dW

dt
=
ω

Ω

∑
if

∑
σi,σf

dWif

dt
f(ϵi)(1 − f(ϵf ))

=
4πω

Ωc2
|A|2

∑
if

| ⟨f | eiq·re0 · pi |i⟩ |2δ(ϵf − ϵi − ω)f(ϵi)[1 − f(ϵf )] (3.44)

21Here and in the following, every equation is in units of ℏ.
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where Ω is the volume of the unit cell. It should be noted that in the case of semiconductors and
insulators, the Fermi distribution function takes on values of 0 or 1. Therefore, in these cases, the
term f(ϵi)(1−f(ϵf )) can be simplified or removed from the equation. By comparing Eq. (3.42) and
Eq. (3.44), we can relate the imaginary part of the macroscopic dielectric function to the quantum
states of the electrons in the solid:

ε2(q) =
8π2

Ωω2

∑
if

∣∣⟨f | eiq·re0 · pi |i⟩
∣∣2 δ(ϵf − ϵi − ω)f(ϵi)(1 − f(ϵf )) (3.45)

which corresponds to Fermi’s golden rule (sum over independent transitions) for the dielectric
function. For photons with energy below ∼ 100 eV, the following approximation is valid: the
momentum q of the photon is negligible compared to that of the electron k. As a consequence, the
limit q → 0 is usually taken in expression (3.45). Due to momentum conservation, the initial and
final states of the electron will have the same k, and Eq. (3.45) can be rewritten in the following
simplified form:

ε2(ω) ≡ ε2(0, ω) =
8π2

Ωω2

∑
knn′

| ⟨nk| e0 · p |n′k⟩ |2δ(ϵnk − ϵn′k − ω)fnk(1 − fn′k) (3.46)

where |nk⟩, ϵnk and fnk are respectively the wavefunction, the eigenvalue and the occupation
number of state n. For further details, we refer the reader to Ref. [56]. The quantity | ⟨nk| e0 ·
p |n′k⟩ |2 represents the probability associated to a direct transition from the valence-band state
|n′k⟩, which is assumed to be occupied, to the conduction-band state ⟨nk|, which is assumed to be
empty, at the k-th point in the BZ. The direct transition contributes to ε2 only if the argument
of the δ function in Eq. (3.46) is zero, meaning that the incident photon energy ℏω is equal to the
energy difference between the valence and the conduction bands at k. In Eq. (3.46), we have a
sum over k-points as well as sums over the conduction and valence bands n, n′. Therefore, from a
computational perspective, we need both a very dense k-mesh to accurately sample the BZ and a
sufficiently large number of bands to include all the transitions we want to observe.
From the imaginary part of the dielectric function ε2(ω) (3.46), the real part ε1(ω) can be obtained
through the Kramers-Kronig relations [57],

ε1(ω) = 1 +
2

π
P
∫ ∞

0

ω′ε2(ω′) − ωε2(ω)

ω′2 − ω2
dω′ (3.47)

where P denotes the principal value. Once the dielectric function εM = ε1 + iε2 is known, other
macroscopic optical properties can be obtained from it.
In this context, the joint density of states (JDOS) can be easily obtained from the delta function
in Eq. (3.45),

JDOS =
1

Ω

∑
k

δ(ϵnk − ϵn′k − ω) (3.48)

The JDOS quantifies the number of pairs of valence- and conduction-band states with an energy
difference in the range between ω and ω+dω. It is useful for identifying transitions that contribute
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to features in the absorption spectra.

3.8 Calculation of the Optical Properties

3.8.1 Optical Properties from DFT

The Kohn-Sham eigenvalues and wavefunctions, Eq. (2.14), can be used as a first step to calculate
the optical properties of materials. By inserting ϕKS

nk and ϵKS
nk in Eq. (3.46), we obtain the so-called

independent-particle approximation (IPA) for the optical absorption of the material. Within the
DFT framework, it is possible to go beyond the IPA by including local-field effects (LFE), which
account for the inhomogeneity of the density distribution in real systems. To achieve this, we rely
on linear response theory, as discussed in Appendix A. Here, we show that it is possible to relate the
inverse of the microscopic dielectric function ε−1(q, ω) to the reducible polarization χ via Eq. (10):

ε−1(q, ω) = δGG′ + v(q + G)χGG′(q, ω) (3.49)

where χGG′(q, ω) is defined by Eq. (3.49) as

χGG′(q, ω) = χ0
GG′(q, ω) +

∑
G2,G′′

χ0
GG2

(q, ω)[v(q + G2)δG2,G′′ + fxcG2,G′′ ]χG′′G′(q, ω) (3.50)

within the TDDFT formalism. In principle, Eq. (3.50) is exact if one knows the expression of fxc.
However, this is not the case for real systems. In standard DFT, fxc is neglected: this is known
as the RPA (see Sec. 3.5.1), which consists of considering only the Hartree term (coming from v)
in the kernel. If we also neglect the Hartree term, we revert at the IPA, as there is no kernel and
χ = χ0. Thus, if we take χ0 from Eq. (8) of Appendix A, the dielectric function can be calculated
from χ0, according to Eq. (10), as

ε−1 = 1 + vχ0

Taking now the macroscopic average, as in Eq. (17), we obtain again the Fermi’s golden rule of
Eq. (3.45), which neglects LFE.
It is important to emphasize that DFT is a ground-state theory and, in principle, cannot directly
account for optical properties. Many-body contributions, such as excitonic effects, which can be
significant in some systems, are neglected in DFT. Nonetheless, DFT results are often quite reliable
for gaining a qualitative understanding of absorption spectra. Since DFT often underestimates the
band gap of semiconductors, a common approach to address this when calculating optical properties
is to apply a rigid shift to the conduction band eigenvalues. The next step consists in considering
QP corrections to the band structure in order to improve the description of the system.
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3.8.2 Optical Properties within the GW Approximation

The GW approximation can be used in optical property calculations by replacing the Kohn-Sham
eigenvalues and wavefunctions with QP energies and wavefunctions to determine the independent-
particle polarizability χ0. This is sometimes referred to as independent QP (IQP) approximation.
The main advantage of using QP energies and wavefunctions for calculating optical properties is
that it provides access to the true electronic gap. However, as discussed in the introduction, this
alone is not sufficient. We must also account for the interaction between the excited electron and
the hole left behind, which affects the absorption energy thresholds, making them lower than the
electronic gap. Consequently, we are still missing a critical component of the absorption spectrum:
excitons. We will address this issue in the following sections.

3.8.3 Excitons

In the 1930s, Yakov Frenkel studied the optical properties of insulators and proposed that energy
transfer occurs through “electron excitation waves” rather than the commonly known heat carriers,
i.e. phonons [58]. This type of excitation involves an excited electron moving outside the closed
electronic shell and a hole left behind by the missing electron. Due to their opposite charges, the
electron and hole form a neutral bound state that is not confined to a specific atom. Consequently,
this electron-hole (e-h) pair can migrate to neighboring atoms and transport energy, leading to
measurable dissipation. These “excitation waves” are known as Frenkel excitons. They are typically
highly localized in space, with an exciton radius on the order of a few angstroms, and possess very
strong binding energies relative to the fundamental electronic gap. Frenkel excitons are typically
found in organic materials and confined systems, such as clusters and molecules.
This concept was later extended to semiconductors, where the dielectric constant is generally higher
than in wide band-gap materials. In these cases, the electron and hole can form a bound state with
a radius spanning several unit cells without dissociating into free particles. Additionally, the e-h
pairs can move almost freely within the crystal, and their behavior can be described by a hydrogen-
like problem where the potential is screened by the material’s static dielectric constant. This
leads to a discrete spectrum, indexed by the principal quantum number n. This type of exciton
is known as a Wannier-Mott exciton, and its energy states are well represented by a hydrogen-like
Hamiltonian [59]. This kind of excitons are common in inorganic semiconductors, especially in the
low-dimensional cases.

As illustrated in Fig. 3.10, excitonic states are found inside the band gap; thus, the formation of
excitons requires less energy than the energy needed for a valence electron to transition directly
to the conduction band. This results in a lower threshold for photon absorption and creates a
difference between the so-called “optical gap” and the actual electronic gap22, which corresponds
exactly to the exciton binding energy. Generally, the binding energy of Frenkel excitons is greater
than that of Wannier-Mott excitons.
The hydrogen-like equation of motion proposed by Wannier imposes symmetries on excitons, re-
quiring optical transitions to adhere to parity conditions. Excitonic states that obey the correct
parity can be formed or recombine through photon absorption or emission and are referred to as
optically active or bright excitons. In contrast, those that do not conform to these conditions,

22In this Thesis, we only take into account direct excitons, meaning excitons arising from transitions involving
states with the same momentum (direct).
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Figure 3.10: Simplified representation of Wannier-Mott and Frenkel excitons.

within the dipole selection rules, are termed optically forbidden or dark excitons. Bright excitons
have a non-zero (excitonic) oscillator strength and result in resonant peaks in the linear optical
spectra (such as absorption), while dark excitons do not contribute to these spectra. In addition
to dipole selection rules, spin-selection rules are also significant.
Thus, describing optical properties requires considering excited states that differ significantly from
those involved in photoemission spectroscopy. In photoemission, the final state of the system can
be considered formally charged, as an electron is either removed or added. In contrast, in absorp-
tion processes, the system is left in a neutral excited state after exchanging energy with the probe,
making the interaction between electrons and holes crucial. These two QPs (i.e. the created quasi-
electron and the quasi-hole) interact among each other and therefore constitute a correlated pair,
generally referred to as an exciton. As the e-h interaction is mainly attractive, the energy of this
composite QP can be lower than the one of the free pair, so that exciton is considered as bound.
This interaction is not captured by the GW approximation, therefore an ab initio investigation of
this type of excitations requires a different treatment. Such treatment enables an accurate descrip-
tion of many experimental observables, like optical absorption and electron energy loss spectroscopy
(EELS). To account for this interaction, it is essential to consider the presence of both the hole
and the electron simultaneously. Within the Green’s function formalism, this requires dealing with
a two-particle (e-h) Green’s function propagator and solving the Bethe-Salpeter Equation (BSE).
We will develop the BSE formalism in the next section.

3.8.4 The Bethe-Salpeter Equation (BSE)

Solving the Bethe-Salpeter equation (BSE) [33, 41, 60] yields much more precise results because it
is designed to compute e-h excited states, including the interaction between the electron, promoted
from a valence band to a conduction band, and the hole left behind. The BSE is based on MBPT
and is much more computationally demanding than alternatives such as TDDFT, which is not
covered in this thesis. This is due to the BSE’s explicit dependence on the two-particle Green’s
function. The motion of the electron and the hole cannot be described by a single-particle Green’s
function because they do not move independently. Instead, the two-particle Green’s function is
necessary to account for excitonic effects, which are the interactions between the electron and the
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hole in their correlated motion.
We have already encountered the two-particle Green’s function in Sec. 3.2.2, as it enters in the EOM
of the one-particle Green’s function. Its definition in Eq. (3.9) allows us to define the two-particle
correlation function L, by subtracting from G2 the uncorrelated contribution:

L(1, 2; 3, 4) = iG2(1, 2; 3, 4) − iG(1; 3)G(2; 4) (3.51)

L is called four-point reducible polarizability. By choosing appropriate time orderings, we can
describe different processes: for example, the choice of t3 = t+1 and t4 = t+2 corresponds to the
propagation of an e-h pair. Moreover, L is deeply connected to the reducible polarizability χ. In
fact, the two quantities differ by just a prefactor that can be deduced from the Feynman rules for
the polarizability and those for the G2. It holds:

χ(1; 2) = −iL(1, 2; 1+, 2+) (3.52)

Similarly to χ, we can then define the independent e-h polarizability L0 as

L0(1, 2; 3, 4) = −iG(1; 3)G(2; 4) (3.53)

It can be shown [60,61] that L satisfies a Dyson-like equation, the Bethe-Salpeter equation

L(1, 2; 3, 4) = L0(1, 2; 3, 4) +

∫
L0(1, 2; 5, 6) Ξ(5, 6; 7, 8)L(7, 8; 3, 4) d5d6d7d8 (3.54)

Ξ is the BSE kernel, accounting for the interaction among these two particles, and it is composed
of two terms:

Ξ(5, 6; 7, 8) = δ(5; 6)δ(7; 8)v(5; 7) + i
δΣ(5; 7)

δG(6; 8)
. (3.55)

The first contribution corresponds to the 4-point Coulomb interaction, also called electron-hole
exchange, while the second term, called direct term, features the variation of the self-energy with
respect to the variation of the Green’s function. It is possible to obtain this expression as a second
iteration of Hedin’s equations Eq. (3.23)-(3.27), where we recalculate the vertex correction Γ. The
kernel Ξ is the link between the non-interacting L0 and the true L, analogous to the self-energy Σ
that links G0 and G in Eq. (3.17). The GW approximation can be used for the Σ in this kernel,
giving

i
δΣ(5; 7)

δG(6; 8)
≈ −δ[G(5; 7)W (5; 7)]

δG(6; 8)
. (3.56)

so that Eq. (3.55) becomes

Ξ(5, 6; 7, 8) = δ(5; 6)δ(7; 8)v(5; 7) − δ(5; 6)δ(7; 8)W (5; 7) −G(5; 7)
δW (5; 7)

δG(6; 8)
(3.57)
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The last term, GδW/δG, is the variation of the screening due to the excitation and is usually
neglected, being a second-order effect. With this approximation to the kernel Ξ, the BSE can be
finally written at the GW level as

L(1, 2; 3, 4) = L0(1, 2; 3, 4)+∫
L0(1, 2; 5, 6) [δ(5; 6)δ(7; 8)v(5; 7) − δ(5; 6)δ(7; 8)W (5; 7)]L(7, 8; 3, 4) d5d6d7d8 (3.58)

To obtain optical spectra, one could derive L from Eq. (3.58), then contract it to obtain the reducible
polarizability χ(1; 2) = −iL(1, 2; 1+, 2+). This can then be used to determine ϵM (see Appendix
A). However, solving Eq. (3.58) involves inverting the BSE kernel, which can be prohibitively ex-
pensive for systems with many electrons, especially when numerous unoccupied states are needed
for convergence and when a dense sampling of the BZ is required. Alternatively, the problem can
be reformulated as a two-particle Hamiltonian in the e-h space.

3.8.5 Effective Two-Particle Hamiltonian

It is interesting to take the time Fourier transform23 of L. In frequency space, this means that the
energy of the e-h pairs can be obtained as the poles of

L(ω) =

∫
dω′

∫
dω′′ L(ω, ω′, ω′′) (3.59)

where

L(ω, ω′, ω′′) = L0(ω, ω′, ω′′) +
1

(2π)4

∫
dω3

∫
dω4 L0(ω, ω′, ω3) Ξ(ω, ω3, ω4)L(ω, ω4, ω

′′) (3.60)

is obtained by time Fourier transform of Eq. (3.54) (for simplicity, we do not make explicit the
dependence on spatial coordinates to simplify the notation). The GW approximated first-order
BSE kernel Ξ transforms as

Ξ(ω, ω3, ω4) ≈ −iv + iW (ω3 − ω4) (3.61)

Looking at Eq. (3.61), we can notice the frequency dependence of the electron- electron screened
interaction. In the following we will use the static-screening approximation, by which we approxi-
mate W (ω3 − ω4) with its static component, denoted in the following as Ws. This approximation
is generally valid if the excitation energies of e-h pairs are smaller than the plasmon frequency
characterizing the system. Substituting Eq. (3.61) (with its static approximation) in Eq. (3.60) and
computing the integrals over ω and ω′ in Eq. (3.59), we obtain

L(ω) = L0(ω) + L0(ω)[−iv +Ws]L(ω) (3.62)

23In the following we will restrict our attention to the simultaneous propagation of a single e-h pair.
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where

L0(ω) = −i
∫
dω′G

(
ω′ +

ω

2

)
G
(
ω′ − ω

2

)
(3.63)

To proceed further, we now write L and L0 in the basis of independent particle states. In practice,
we assume that the single-particle Green’s functions appearing in L0 are given by

G(r1, r2, ω) =
∑
ni

ϕKS
ni

(r1)ϕ∗KS
ni

(r2)

ω − ϵQP
ni + iηsgn(ϵQP

ni − µ)
(3.64)

where we have made explicit the dependence on spatial coordinates and used the compact notation
ni ≡ (nk). The Green’s function in Eq. (3.64) describes the propagation of QPs (electron and
holes) having as wavefunctions the KS states and energies equal to QP-corrected KS eigenvalues.
By defining the basis transformation of 4-variables functions F (r1, r2, r3, r4, ω) as

Fn1n2n3n4
(ω) =

∫
dr1dr2dr3dr4 ϕ

∗KS
n1

(r1)ϕ∗KS
n2

(r2)F (r1, r2, r3, r4, ω)ϕKS
n3

(r3)ϕKS
n4

(r4) (3.65)

We can project Eq. (3.62) on the basis of the single-particle KS states: via algebraic manipulation
we obtain

Ln1n2n3n4
(ω) = 2i [Hexc − ω]n1n2n3n4

(fn2
− fn4

) (3.66)

ni being the indexes running over KS states while fni
is the occupation factor for ni-state and

where we have introduced the excitonic Hamiltonian

Hexc(n1, n2, n3, n4) = (ϵQP
n2

− ϵQP
n1

)δn1n4
δn2n3

+ (fn1
− fn3

)Ξ(n1, n2, n3, n4) (3.67)

The presence of the factor (fn4 − fn3) implies that only the matrix elements of the excitonic
Hamiltonian Hexc, in which the states labeled by n3 and n4 have different occupations, contribute.
To make the expression of Hexc more clear, we make explicit the indices ni by associating to
each of them a conduction (c) or a valence (v) band index at a given k-point24, according to the
occupation factors f , assuming T = 0 K. In this way, we can express the excitonic Hamiltonian as
a block-matrix

Hexc =

[
Hres

(vc,v′c′) Kcoupl
(vc,v′c′)

[Kcoupl
(vc,v′c′)]

∗ [Hres
(vc,v′c′)]

∗

]
(3.68)

Hres
(vc,v′c′) is the resonant term, which consists of positive frequency transitions only. The off-diagonal

terms Kcoupl
(vc,v′c′) are the coupling terms, as they mix positive and negative frequency transitions

(excitations and de-excitations). The last term is the anti-resonant one, concerning only negative

24Here, we will limit our description to vertical transitions only.
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energy transitions (important for photoluminescence). In most of the cases, we can safely neglect
the off-diagonal terms, as often these matrix elements are small with respect to the energy range
of transitions. This approximation is called the Tamm-Dancoff approximation (TDA) [62, 63] and
allows us to consider Hexc ≈ Hres, which is an Hermitian matrix, whose eigenvalues corresponds to
the energies of the correlated e-h pairs accessible in the system.
Using the extended notation (nk) for the KS states, we can write (the two blocks of labels refer to
the electron and to the hole)

Hres
(vck,v′c′k′) = (ϵQP

ck − ϵQP
vk )δcc′δvv′δkk′ +Kd

(vck,v′c′k′) +Kx
(vck,v′c′k′) (3.69)

where

Kd
(vck,v′c′k′) = −

∫
dr

∫
dr′ ϕ∗KS

ck (r)ϕKS
c′k′(r)Ws(r, r

′)ϕKS
vk (r′)ϕ∗KS

v′k′ (r′) (3.70)

is called the direct BSE kernel, while

Kx
(vck,v′c′k′) = 2

∫
dr

∫
dr′ ϕ∗KS

ck (r)ϕKS
vk (r) v(|r− r′|)ϕKS

c′k′(r′)ϕ∗KS
v′k′ (r′) (3.71)

is the exchange kernel. Looking at Eqs. (3.69)-(3.71), the physical meaning of Hres is transparent.
The first term in Eq. (3.69) corresponds to the energies of the independent QP transitions from
a valence state (vk) to a conduction state (ck). The direct kernel Kd accounts for the attractive
coupling between the electron and the hole, governed by the static screened interaction25 Ws, while
the exchange kernel Kx represents a repulsive term, which stems from the Hartree potential.
Notice that the excitonic Hamiltonian given by Eq. (3.69) is valid for system with negligible SOC.
In these cases, excitons can have a singlet (triplet) spin structure, where the electron and the hole
have equal (opposite) spin projections. As optically active excitons must be of singlet type, in the
following we will only focus on this particular spin-configuration, for which the exchange term is
different from zero. We point out that triplet-exciton energies can be obtained from Eq. (3.69) by
neglecting the exchange kernel contribution [41,64]. We will generalize the BSE for SOC calculations
in Sec. 3.8.7.
The diagonalization of Eq. (3.69) results in

Hres
(vck,v′c′k′)A

λ
v′c′k′ = EλA

λ
vck (3.72)

where λ indexes the different excitonic states. Eq. (3.72) yields the exciton energies Eλ, together
with the eigenvectors |λ⟩ =

∑
vckA

λ
vck |vck⟩, where the Aλ

vck are called envelope functions. The
square modulus of Aλ defines the weight of the single-particle transitions (vk) → (ck) to the cor-
responding excitonic state λ. A general formulation of the BSE, though beyond the scope of this
thesis, includes excitons with a transferred momentum q between the valence v and conduction c
states, considering both direct and indirect excitons. The resulting eigenvalues Eλ(q) represent the
exciton dispersion, also known as the excitonic band structure. The long-wavelength limit can be

25The term “static” means that, instead of calculating the screened interaction W as in the GW case (see Eq. (11)
of Appendix A), here we consider the static dielectric function, which is defined, starting from Eq. (10), as ε−1

s (q, ω =
0) = δGG′ + v(q+G)χGG′ (q, ω = 0)
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obtained by simply letting q → 0.
As already mentioned, the excitonic Hamiltonian is not necessarily Hermitian. However, its reso-
nant part is. Starting from the spectrum of Hres (3.72), it is possible to derive the macroscopic
dielectric function ϵM(ω), whose imaginary part is proportional to the absorption spectrum obtained
in optical spectroscopy (see Appendix A). We notice that, when the macroscopic dielectric function
is evaluated, the bare Coulomb interaction appearing in the exchange kernel (3.71) is substituted
by a potential not including the long range contribution [61], i.e. v(q+G) is set to zero for each q,
if G = 0. This accounts for the fact that optical spectroscopy describes the macroscopic response
of the system to an external perturbation. In practice, this quantity is evaluated as

εM(ω) = 1 − 8π

Ω

∑
λ

|Dj
λ|2

ω − Eλ + iη
(3.73)

where Ω is the unit cell volume, λ runs over the excitonic eigenstates with energy Eλ and

Dj
λ =

∑
vck

Aλ
vck(̂j · dvck) (3.74)

is the dipole strength for exciton λ, assuming light polarized along direction ĵ. This quantity
determines if a given exciton can be optically excited by electromagnetic radiation with a certain
polarization. We notice that Eq. (3.74) is an average of the single-particle interband transition
dipole dvck, weighted by the contribution of each transition (vk) → (ck) to the corresponding
exciton. Thus, in order to obtain the macroscopic dielectric function, it is necessary to diagonalize
the excitonic Hamiltonian and determine the QP wavefunctions, which are used to compute the
dipole matrix elements in the numerator of Eq. (3.73). Commonly, Kohn-Sham wavefunctions are
assumed to be a good approximation of the QP wavefunctions. Hence, the interband dipoles dvck

are often computed as [65]

dvck =
1

ϵKS
ck − ϵKS

vk

(〈
ϕKS
vk

∣∣p ∣∣ϕKS
ck

〉
+
〈
ϕKS
vk

∣∣ [r, V̂NL]
∣∣ϕKS

ck

〉)

where V̂NL is the non-local part of the KS potential, due to the non-locality of pseudopotentials
and p is the linear momentum. The dielectric function obtained by solving the BSE exhibits poles
at the eigenvalues of the excitonic Hamiltonian, which are no longer simply the differences between
the energies of occupied and unoccupied QP states. This causes the spectral features to shift, typ-
ically to lower energies compared to the IPA. Each eigenstate of the excitonic Hamiltonian (3.72)
is a superposition of independent QP transitions, with each transition contributing according to
a weight given by Aλ. This mixing of independent transitions in the numerator of the dielectric
function significantly alters the spectral lineshape.
In this Thesis, the BSE is solved using the YAMBO code. In practice, this involves performing a
DFT calculation to obtain Kohn-Sham states and energies, which are then used to construct the
static screened interaction Ws within the RPA, as described in Sec. 3.8.1. Using the same set of
KS states, the Hermitian excitonic Hamiltonian is constructed according to Eqs. (3.69)-(3.71), with
QP energies derived from KS values using Eq. (3.36). Numerically, it is crucial to carefully select
both the number of valence and conduction states included in the excitonic Hamiltonian and the
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sampling of the BZ, to ensure that the optical spectra are properly converged26.

3.8.6 Alternative Solutions of the BSE

Computing spectra with Eq. (3.73) requires the full diagonalization of Hres (3.72), which is an
(Nv ×Nc ×Nk)2 square matrix. This procedure can become prohibitively expensive as the size of
the e-h space and the number of k-points increase. Apart from the aforementioned diagonalization
method for solving the BSE, Lanczos-based methods [66] provide a cost-effective alternative for
handling sparse matrices [67]. Lanczos approaches avoid the need for inverting the BSE kernel or
fully diagonalizing the two-particle Hamiltonian. Instead, these methods express the Hamiltonian as
a tridiagonal matrix using recursive relations, leading to an iterative solution that is computationally
cheaper than full diagonalization. While the previously described solvers yield the complete set of
both excitonic energies and wavefunctions of the system, Lanczos schemes typically offer a partial
solution. For instance, Haydock’s implementation [68] of the Lanczos method provides matrix
elements of the resolvent of the eigenproblem in Eq. (3.72), ⟨S0|(Hres − Iω)−1|S0⟩, for a given

initial (normalized) state |S0⟩, where I is the identity matrix. Defining |S0⟩ as |S0⟩ = |P ⟩
∥P∥ , with

|P ⟩ = lim
q→0

1

|q|
∑
vck

⟨vk| eiq·r |ck− q⟩

which allows us to write the macroscopic dielectric function in Eq. (3.73) simply as

εM(ω) = 1 − 4π||P 2|| ⟨S0| (Hres − Iω)−1 |S0⟩

and use this resolvent. Therefore, Haydock’s algorithm can compute the optical spectrum but
does not provide the excitonic wavefunctions [68–70]. Haydock’s scheme is based on mapping the
stationary quantum problem onto a semi-infinite chain model composed of basis states |Vi⟩, referred
to as Haydock vectors. The subscript i denotes the iteration and indicates that these states are
obtained recursively. In this basis, the Hamiltonian of the problem is represented as a tridiagonal
matrix characterized by the coefficients ai and bi. Haydock provides a set of recursive relations to
compute these coefficients and basis vectors iteratively, starting from |V0⟩,

ai = ⟨Vi|Hres |Vi⟩

bi+1 = ||(Hres − ai) |Vi⟩ − bi |Vi−1⟩ ||

|Vi+1⟩ =
1

bi+1
[(Hres − ai) |Vi⟩ − bi |Vi−1⟩]

26In general, to obtain properly converged exciton energies, one needs denser k-grids than those used in GW
calculations, where QP corrections are computed.
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Finally, Haydock’s algorithm provides a method for calculating the resolvent matrix element as a
continued fraction of the Hamiltonian coefficients ai and bi. This continued fraction can then be
used to compute the optical spectrum at each iteration i according to:

ε
(i)
M (ω) = 1 − ||P ||2 1

(ω − a1) − b22

(ω−a2)−
b23
...

(3.75)

The process continues until the difference between the spectra of successive iterations falls below
an acceptable threshold. It is important to note that the number of denominators in the continued
fraction of Eq. (3.75) depends on the iteration number. For example, the dielectric function at the

tenth iteration, ε
(10)
M , is calculated using coefficients up to a10 and b10.

Despite the numerical advantages offered by Lanczos’ solvers, a given system may still be too large
for computing optical spectra at the BSE level. Although Lanczos’ schemes alleviate the prob-
lem of diagonalization, the bottleneck shifts to the earlier step of computing and storing the BSE
kernel. This step can become impractical depending on the size of the e-h basis. For instance,
a material with 10 bands requiring a 30×30×30 k-grid results in a (resonant) BSE kernel matrix
with a dimension of 675000, necessitating several terabytes of memory. While some state-of-the-art
high-memory nodes might accommodate this, it is near the limits of contemporary supercomputers.
Any increase in system size, such as doubling the number of bands to include spin-orbit coupling
or using a supercell, could quickly become prohibitive. A possible solution (implemented in the
YAMBO code), oftentimes used in this Thesis, is to exploit the subspace iterative algorithm using
the SLEPc library [71,72] (SLEPc solver). This solver outputs the individual exciton energies and
composition about an energy value chosen by the user, by diagonalizing only a selected part of
the full BSE matrix. It can be applied to medium-large systems but does not provide the overall
spectrum. This solver is typically used after obtaining the spectra from the Lanczos-Haydock solver
to either analyze a specific peak or getting the energy and composition of a few low-lying excitons.
The computational cost grows with the number of excitons one asks to compute.

3.8.7 Including Spin-Orbit in the BSE

The spin-orbit interaction can significantly influence the macroscopic optical properties of materials
containing heavy atoms, leading to features such as spin-split peaks and valley-selective optical
transitions in their absorption spectra. Additionally, it is responsible for finer details that are
crucial for applications in optoelectronic devices. While we do not delve into the detailed derivation
here, we follow the work of Marsili et al. [73], which provides a comprehensive derivation of the
non-collinear GW-BSE equations. This formulation naturally incorporates SOC at the level of
ground-state calculations, making it well-suited for studying the optical properties of many-body
quantum systems where spin dependence can be treated as a non-local term in the Hamiltonian.
The starting point is the many-body total Hamiltonian of the system including first order relativistic
corrections

Ĥ = Ĥ0 + Ĥ(e−e) + Ĥ(RK) + Ĥ(SOC)

where Ĥ0 is the non relativistic one-body Hamiltonian, composed by a kinetic term and the atomic
scalar external potential, H(e−e) the electron-electron Coulomb interaction, while H(RK) +H(SOC)
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are the first order relativistic corrections. H(RK) is the mass-velocity term plus the Darwin term,
while H(SOC) is the SOC term. What is relevant here is that H(SOI) can be expressed as a sum
of terms which depend on a single spin operator and can thus be conveniently written as a sum of
2 × 2 matrix in the spin space. Since all other terms are spin-independent, this implies that the
whole Hamiltonian can be expressed as a sum of 2 × 2 matrices. This non-collinear formulation is
already incorporated into DFT XC functionals, as discussed in Sec. 2.4.6. When a non-collinear
potential is included in the Hamiltonian, the entire formulation of the many-body problem must
be rewritten in the spinorial basis. Indeed, in Ref. [73], the authors address this by rewriting the
Hedin equations in the spinorial basis. The spinorial BSE can be derived from the general spinorial
Hedin equations through specific manipulations. Below, we present the spinorial BSE for a generic
transferred momentum q, i.e.

L̃ nn′k
mm′p(q, ω) = L0

nn′k
mm′p

(q, ω) + L0
nn′k
n̄n̄′k̄

(q, ω)K n̄ n̄′k̄
m̄ m̄′p̄

(q)L̃m̄ m̄′p̄
mm′p

(q, ω)

In the q → 0 (optical) limit, this equation simplifies to the optical BSE. As in the spin-independent
case, the solution of can be recast in an eigenvalue problem with the excitonic Hamiltonian. Starting
from the eigenvectors of the excitonic Hamiltonian, we can define the excitonic state wave-function
as a linear combination of e-h pairs

L nn′k
mm′p(ω) =

(∑
λ

Aλ,∗
nn′kA

λ
mm′p

ω − Eλ + i0+

)

The e-h pairs that contribute to the excitonic wavefunction are vectors in spin space. In the
non-collinear case, this means that the exciton is a linear combination of the four possible spin
orientations of the electron and hole, effectively forming a tensor.

3.8.8 BSE Calculations in Low-Dimensional Systems

Reduced dimensionality in materials poses significant challenges for ab initio calculations of elec-
tronic and optical properties. In low-dimensional systems, such as 2D materials, nanowires, and
quantum dots (or molecules), electron-electron and e-h interactions are much stronger than in bulk
materials due to reduced screening and enhanced Coulomb interactions. These effects lead to pro-
nounced excitonic features, strong quantum confinement, and non-trivial band structures, which
require highly accurate and computationally intensive methods to model correctly. Additionally,
the reduced dimensionality complicates the convergence of calculations, requiring careful consider-
ation of factors such as BZ sampling, dielectric screening, and boundary conditions. Addressing
these challenges is crucial for accurately predicting the electronic and optical properties of low-
dimensional materials.
As described in Sec. 3.6.4 for QP calculations, in a PW basis set framework, low-dimensional materi-
als are modeled using a supercell approach. In this method, a Coulomb potential cutoff is required
to prevent interactions between periodic images along the non-periodic direction(s). While this
technique is essential for accurate calculations of low-dimensional materials, it introduces a signif-
icant challenge when calculating optical properties. Specifically, because the system is treated as
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isolated within the supercell, the calculated dielectric function essentially represents that of the vac-
uum, rather than the actual material. To address this issue, a well-defined quantity that is closely
related to optical conductivity or absorbance is needed. One such quantity is often the macroscopic
polarizability. For a 2D system, the macroscopic polarizability α2D has the dimension of length and
is defined as:

α2D(ω) = − lim
q→0

L

4πq2
χ00(q, ω) (3.76)

which is properly renormalized to the non-periodic distance L and is thus vacuum-independent.
From α2D, another key quantity can be defined, which will be used throughout this Thesis. This
quantity is called optical absorbance and it is defined as [74]

A(ω) =
4πω

c
α2D(ω) (3.77)

A similar expression holds also for one-dimensional (1D) and zero-dimensional (0D) systems, given
that the polarizability is multiplied by the non-periodic directions L1 and L2 and the supercell
volume V , respectively. Unless otherwise stated, all optical absorption (3.77) in this Thesis are
expressed in atomic units.
For isolated 0D systems, we can also define the photoabsorption cross-section

σxx′(ω) = −4πω

c
Im
∑
s

fsx f
s
x′

(
1

ω − Ωs + iη
+

1

ω + Ωs + iη

)
(3.78)

where Ωs is the excitonic eigenvalue of the state s, with eigenvector (Xs, Y s), and fs are the exci-
tonic oscillator strengths, defined as linear combinations of independent-particle oscillator strengths
through the excitonic eigenvectors:

fsx =
∑
ia

⟨i| x̂ |a⟩ (Xs
ia + Y s

ia)

The symbol x̂ is the position operator along the x direction in space. Unless otherwise stated, all
σxx′ (3.78) in this Thesis are expressed in atomic units and represent the average value across all
directions.
While much of the previous discussion focused on general theoretical aspects that are indepen-
dent of the system’s dimensionality, it is important to note that not all systems can be treated
equivalently in practical calculations. For instance, the choice of the basis set used to expand the
orbital wavefunctions of the studied system. Using localized Gaussian basis sets instead of PWs
for computing the properties of 0D materials offers several advantages. Localized Gaussians are
particularly well-suited for capturing the electronic structure of systems with localized states, such
as quantum dots or molecules, where the electronic density is confined in space. They can provide
a more accurate representation of the electron distribution in these small, finite systems and often
require fewer basis functions than plane waves to achieve similar accuracy. Additionally, localized
Gaussians typically allow for faster convergence with respect to the number of basis functions and
can lead to significant computational savings, especially when dealing with large-scale simulations
or complex interactions in 0D materials. While a detailed discussion of computational methods
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for clusters and molecules is beyond the scope of this work, it is important to provide a general
introduction to the techniques and code employed. A brief overview on this topic is presented in
Appendix B.
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Chapter 4

Results and Discussions:
Two-Dimensional Materials

Over the past 20 years, significant efforts have been dedicated to the search for two-dimensional
(2D) materials, which can be derived from van der Waals (vdW) layered solids. Due to their surfaces
being naturally terminated by vdW interactions — rather than by dangling bonds — 2D materials
tend to be stable under ambient conditions. This stability, combined with their extraordinary me-
chanical, electrical, and optical properties, makes them highly advantageous. Thanks to quantum
confinement effects, 2D materials exhibit properties distinct from their bulk counterparts, drawing
significant attention from both academia and industry [75–85].
Due to their atomic-scale thickness, 2D materials are characterized by weak dielectric screening,
strong light–matter interaction, and often by the presence of highly bound photo-generated electron-
hole pairs, known as excitons, which are central to many of their optoelectronic properties (see
Sec. 3.8.3). Moreover, in 2D systems, electrons are directly exposed to the environment because of
their reduced thickness, making them highly sensitive to any changes, such as atomic or molecu-
lar doping, strain, or external electric and magnetic fields [86–91]. This sensitivity offers exciting
potential for applications in electronics, optoelectronics, and energy storage devices, promising in-
creased efficiency, lower costs, and reduced environmental impact [92–94].
To date, a large number of 2D materials have been discovered and fabricated, which can gener-
ally be classified into two main categories based on their structures. The first category includes
materials such as graphene and hexagonal boron nitride (h-BN) monolayers, which feature a six-
membered honeycomb-like structure. The second category consists of triatomic layers, including
metal halides (such as PbI2 and MgBr2), transition metal carbon/nitrogen compounds, transition
metal dichalcogenides (MX2), and elemental 2D materials, other than graphene, known as Xenes.
These last two groups, in particular, will be the focus of the following sections.

4.1 Tellurene Polymorphs for Solar Harvesting Applications

4.1.1 Introduction

As mentioned above, the pursuit for 2D materials was motivated by the escalating demand for
diverse applications, encouraged by the rapid advancements in the technological industry. Simul-
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taneously, solar energy has emerged as a clean and renewable alternative to traditional fossil fuels,
addressing the ever-growing global energy needs. However, several challenges, including stability,
scalability, large-scale production, and the identification of materials exhibiting power conversion
efficiency (PCE) comparable to current silicon-based photovoltaic devices, must be overcome for
these next-generation optoelectronic devices to achieve commercial viability. Given the pivotal im-
portance of enhancing optical absorbance while maintaining minimal thickness for the development
of new nanoscale devices, the realm of 2D ultra-thin solar cells is currently a focal point of active
research [77,95–112]. This area holds the promise of revolutionizing solar energy harvesting, offering
potentially higher efficiency, lower cost, and increased flexibility, provided that challenges related
to stability, scalability, and material performance are effectively addressed.
Various combinations of nanometer-thick 2D materials, with desirable band alignments and PCE
ranging from a few to tenths %, have been either theoretically predicted or synthesized experimen-
tally. However, only a limited number of 2D materials exhibit all the essential properties required
for practical solar cells. For instance, graphene is (semi-)metallic and lacks a band gap, MoS2

has a low carrier mobility [113], and phosphorene, while having an ideal band gap (1.51 eV) and
huge carrier mobility [114], readily degrades in ambient conditions [115]. In contrast, 2D tellurium,
known as tellurene, emerges as a promising semiconductor of increasing interest [116–119] with a
thickness-tunable band gap [120], relatively high carrier mobility (up to 103 cm2V−1s−1) [121–123]
and it is practically inert when exposed to air, even for a prolonged period of time and without
any encapsulation, with stable performances at room temperature [120,121,124]. Furthermore, tel-
lurene shows extraordinary electronic transport properties [125, 126]. Recently, also 2D selenium,
a neighbor atomic species of tellurium, has been experimentally proven to be a promising material
for high-efficiency solar harvesting applications [127]. These and numerous other attractive features
make these materials suitable for both fundamental research and practical applications, including
optoelectronics and photovoltaics [128–133].
In this context, employing accurate ground and excited-state first-principles analysis, we demon-
strate the remarkable electronic and optical characteristics of tellurene (Te), making it an intriguing
contender for highly efficient ultra-thin and flexible solar cell technology. This potential is realized
through the strategic use of junctions with other suitable 2D materials, such as transition-metal
dichalcogenides (TMDs), and by employing the diverse polymorphs of Te. Indeed, thanks to tel-
lurium’s multivalent nature, multiple bonding configurations can occur, resulting in the observation
of several allotropic forms. These include the orthorhombic α-phase, which is the most stable in
the bulk configuration (known as Te-I), characterized by quasi-1D helical chains, with a two-fold
coordination number; the orthorhombic β-phase, featuring a mixture of three-fold and four-fold
coordination number and the hexagonal, 1T-MoS2-like γ-phase, with a six-fold coordination num-
ber [134, 135] (Fig. 4.1). Here, unlike in Ref. [134], we adopted the notation from Refs. [136, 137]
to distinguish the various allotropic forms. Here, the alphabetical order corresponds to the forma-
tion energy of these phases above one layer (1L), listed in ascending order. All three phases have
been successfully synthesized experimentally [116, 120, 138, 139]. Scalable and high-quality 2D Te
nanoflakes can be efficiently synthesized through various techniques, including physical vapor de-
position (PVD), molecular beam epitaxy (MBE), solution synthesis, liquid-phase exfoliation (LPE)
methods, and thermal evaporation [121,123,140–143]. These methods hold the potential to produce
stable, high-quality, ultra-thin semiconductors with precise control over composition, structure and
dimensions.
The α- and β-phases are particularly intriguing due to their pronounced in-plane electronic and
optical anisotropy, as shown by various experimental works [121–123], making them very appeal-
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ing for applications such as polarization-sensitive photodetectors, linearly polarized pulse gener-
ators, high-gain digital inverters and high-performance thermoelectric devices [144–150]. In fact,
in-plane anisotropic 2D materials provide not only a rich physics, such as dichroism and birefrin-
gence [151, 152], but introduce an additional degree of freedom to regulate the intrinsic optical
properties for novel polarization-sensitive applications [153, 154], not achievable with isotropic or
out-of-plane optically anisotropic materials.

Figure 4.1: Optimized geometric structures of (a) 2L α-Te, (b) 1L β-Te and (c) 1L γ-Te. The
lattice parameters a and b and the layer thickness δ are also displayed. Here we use the notation
introduced in Refs. [136,137] to identify the different allotropic forms, where the alphabetical order
follows the formation energy — in ascending order — of these phases, above one layer. Dark and
light blue in panel (a) refers to Te atoms belonging to different layers.

4.1.2 Methods

DFT and MBPT calculations were performed to investigate the electronic and optical properties
of Te, the use of the QE integrated suite [22, 23] and the YAMBO code [48, 49], respectively.
GGA Perdew-Burke-Ernzerhof (PBE) functional [155], along with Grimme’s DFT-D2 vdW correc-
tion [156] were employed to accurately describe electronic and ionic interactions. To account for
SOC and to include semi-core electrons of tellurium atoms (specifically those from the fourth shell),
a norm-conserving, fully-relativistic pseudopotential from the PseudoDojo repository (v0.4) [157]
was used. Convergence of the calculations was achieved with a kinetic energy cutoff of 65 Ry. It was
verified that the electronic band structures remained unchanged, except for a rigid shift, with this
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Table 4.1: Optimized lattice parameters (a, b) , layer thickness (δ) and distance between layers
(dz) for 2L α-Te. In the case of orthorhombic lattice, a and b represent the x and y directions,
respectively.

a (Å) b (Å) δ (Å) dz (Å)

2L α-Te 4.230 5.790 2.104 1.820

1L β-Te 5.478 4.175 2.166 -

1L γ-Te 4.150 - 3.677 -

cutoff choice. Uniform Monkhorst-Pack k-point meshes with dimensions of 30× 28× 1, 24× 24× 1,
and 36 × 36 × 1 were employed for the α-, β-, and γ-phases, respectively. To prevent interaction
between periodic replicas, a minimum vacuum region of 15 Å along the direction perpendicular
to the layer planes (z) was introduced. Structural relaxation was considered converged when the
maximum component of the residual ionic forces dropped below 10−8 Ry/Bohr.
From the obtained DFT eigenvalues and eigenvectors, MBPT calculations were carried out, specif-
ically using the G0W0 method for QP corrections and the BSE [158–161] for e-h interaction. These
calculations allowed to account for many-body effects and accurately describe the electronic and
optical properties of the systems. Energy cutoffs of 60 (6), 70 (6), and 80 (8) Ry were used for the
exchange (correlation) part of the self-energy Σx (Σc), while 306, 478, and 278 empty bands were
included in the calculation of Σc. A technique, described in Ref. [162], was applied to speed up
convergence with respect to empty states, and a cutoff for the Coulomb potential along the non-
periodic direction (z) was used, as implemented in the YAMBO code [49]. For the BSE excitonic
Hamiltonian, a total of 5 occupied states and 5 unoccupied states (for the α-phase), and 6 occupied
states and 6 unoccupied states (for both β- and γ-phases) were employed. This choice facilitated
the calculation of the optical response, exciton binding energies, and their spatial localizations. The
convergence with respect to the k-points for the BSE calculations was carefully checked, and the
following k-point grids were used: 40 × 40 × 1, 40 × 40 × 1, 42 × 42 × 1 for α-, β-, and γ-phases,
respectively. Furthermore, differently from most of the existing literature [163–165], the spinorial
nature of the wavefunctions [166] and the full semi-core n = 4 tellurium states from DFT were
considered up to the many-body analysis.

4.1.3 Structural Properties

The main focus here concerns ultra-thin samples, specifically investigating the 1L configuration for
the orthorhombic β- and the hexagonal γ-phase. However, due to instability with just a single
atomic layer [135, 167], the orthorhombic chained α-phase is studied in the 2L configuration. For
each system, a structural relaxation is performed to obtain optimized lattice parameters and atomic
positions (Fig. 4.1). These are reported in Table 4.1. For the 2L α-Te configuration, the system
comprises two alternate planes of parallel helical chains, separated by a distance dz = 1.820 Å. It
exhibits orthorhombic symmetry (a = 4.230 Å, b = 5.790 Å), with six atoms per unit cell (Fig. 4.1a).
The orthorhombic 1L β-Te is a meta-stable structure, featuring three atoms per unit cell (Fig. 4.1b),
with lattice parameters a = 5.478 Å and b = 4.175 Å. Lastly, the 1L γ-Te adopts a hexagonal sym-
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metry lattice (a = 4.150 Å) with three atoms per unit cell (Fig. 4.1c). This structure exhibits
a honeycomb pattern, with an atom in the middle of each hexagon, and a thickness of about
δ = 3.677 Å. Notably, in free-standing configuration, this allotropic form appears as the most sta-
ble in the 1L case. More information about these systems, up to four layers, can be found in our
previous work [167].

4.1.4 Electronic Properties

Next, Kohn-Sham eigenvalues and eigenstates are exploited within the many-body approach in order
to evaluate the related QP corrections. The DFT and QP-corrected electronic band structures are
reported in Fig. 3 of Appendix D. Interestingly, in the case of 2L α-Te (see Figs. 3a and 4.3a), both
the indirect and the direct gap are not found along high-symmetry directions. Indeed, in contrast
to previous findings [135], and thanks to a very dense sampling of the BZ, we discovered that the
indirect gap is located at the k-points qVBM = 2π

a (0.2375, 0.2283, 0) and qCBM = 2π
a (0.0125,

0.1735, 0), where a is the lattice parameter. The direct gap is instead located at the k-point
q∗ = 2π

a (0.2125, 0.2100, 0). Both q∗ and qCBM are found in a direction parallel to Γ → S,
which we denote as Γ∗ → S∗ (refer to Fig. 4.3a). The minimum indirect and direct band gaps are,
respectively, 1.31 and 1.51 eV. To the best of our knowledge, these are the first reported many-body
calculations for such a system. Concerning 1L β-Te, our analysis unveils that this phase displays
a direct band gap with a QP-corrected value of 1.96 eV at the Γ point (see Fig. 3c). Previously,
Min et al. [165] reported a comparable value (1.99 eV) through linear extrapolation. However, it
is noteworthy that, by neglecting SOC, they observed an indirect band gap nature. Lastly, the 1L
γ-Te is an indirect band gap material with the lowest (indirect) QP gap of 1.02 eV (see Fig. 3e).
The CBM is located at the Γ point, while the VBM is situated along the Γ → M direction. This
result is consistent with the findings of Ref. [168]. All the information about electronic band gaps
is summarized in Table 4.2.
It is worth highlighting that the majority of previous literature does not consider the inclusion
of SOC and the truncation of the Coulomb potential to eliminate spurious interactions between
replica [163–165]. In this study, we account for both these factors which are very crucial for reliable
predictions of the QP electronic properties.

4.1.5 Optical Properties

In the subsequent discussion, we focus into the optical response of Te polymorphs, examining the
important influence of e-h interaction. This exploration is carried out through the resolution of the
BSE [41]. Our central focus lies in studying the onset of optical absorption spectra, particularly un-
der the influence of in-plane light polarization. A key aspect of our investigation involves a detailed
analysis of the spatial localization of the lowest bright direct excitons, both in real and recipro-
cal space domains. To provide a comprehensive backdrop, each spectrum is thoughtfully paired
with the solar flux within the same energy range. These relationships are visually represented by
the filled orange curves of Fig. 4.2. The comparative analysis serves as a valuable tool, offering
us insights into the optical features of Te and its potential applications. Moving forward, in the
upcoming section, we leverage this wealth of information to present a demonstrative illustration.
Specifically, we highlight how the optical absorption spectra of Te polymorphs seamlessly align with
the region of maximum solar activity intensity. These findings hold promise for applications and
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Figure 4.2: [Left ] Lowest direct gap region, calculated at the G0W0 level, obtained by using a
norm-conserving, fully relativistic GGA-PBE pseudopotential, with SOC and semi-core electrons,
of 2L α-Te (a), 1L β-Te (c) and 1L γ-Te (e), respectively. The dots represent the transitions
contributing to the first two bright excitons, indicated with red (A) and green (B) colours, and their
size is proportional to the intensity of the transition. Energy zero is set as the top of the valence
bands. [Right ] Optical absorption spectra, expressed in terms of the absorbance A(ω), calculated
at the BSE level, with the inclusion of SOC and semi-core electrons, of 2L α-Te (b, blue line), 1L
β-Te (d, red line) and 1L γ-Te (f , violet line), respectively. Broadening is set to 0.01 eV. The
AM1.5G solar flux Φ(ω) [169] (orange, right axis) is also reported, in terms of both photon energy
(bottom axis) and wavelength (top axis).
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Figure 4.3: [Top ] Plot of the weights of the most intense transitions contributing to the first bright
exciton, localized in the BZ, of 2L α-Te (a), 1L β-Te (b) and 1L γ-Te (c), respectively. In the
case of 2L α-Te, the k-points, at which both the indirect and direct band gaps are located, are
highlighted. We reference as Γ∗ and S∗ the ends of the direction parallel to the high-symmetry
Γ → S. [Bottom ] Excitonic wavefunction plot, in direct space, of 2L α-Te (d), 1L β-Te (e) and
1L γ-Te (f), respectively. This is obtained by averaging the position of the hole over the entire unit
cell, while increasing the number of cell repetitions in each in-plane direction, until the wavefunction
vanishes.

Figure 4.4: Degree of polarization, defined as the ratio between the difference (Ax − Ay) and the
sum (Ax +Ay) of the absorbance in the two in-plane directions, for 2L α-Te (a) and 1L β-Te (b),
respectively. Broadening is set to 0.01 eV.
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Table 4.2: Calculated lowest direct (d ) and indirect (i ) electronic band gaps, with the inclusion of
SOC, at the DFT, G0W0 and BSE level. EBSE

b is the excitonic binding energy of the lowest bright

exciton, calculated as the difference between the lowest QP direct gap EG0W0

g,dir and the BSE one EBSE
g,dir.

Between round brackets, the binding energies calculated from the Rytova-Keldysh model [167]. The
last two columns show the estimated exciton radiative lifetime of the first bright exciton at 0 K
(τA(T = 0)) and the room temperature (RT = 300K) average radiative lifetime (⟨τeff⟩).

EDFT
g,i (eV) EDFT

g,d (eV) EG0W0
g,i (eV) EG0W0

g,d (eV) EBSE
g,d (eV) EBSE

b (eV) τA(0) (ps) ⟨τRT
eff ⟩ (ns)

2L α-Te 0.67 0.86 1.31 1.51 1.23 0.28 0.7 12

(0.26)

1L β-Te - 1.02 - 1.96 1.46 0.50 5×10−2 0.9

(0.57)

1L γ-Te 0.42 0.54 1.02 1.18 0.84 0.34 0.2 0.6

(0.20)

advancements in the realms of optical response and solar energy utilization.
The BSE optical spectra are expressed in terms of the optical absorbance, as defined in Eq. 3.77
of Sec. 3.8.8. Upon comparing the spectra obtained at the BSE and the IQP level of approxima-
tion (refer to Fig. 3), we observe that a significant energy range of the optical features exhibits an
excitonic nature. Specifically, we predict the presence of room temperature-stable excitons with
binding energies ranging from 0.28 to 0.50 eV (see Table 4.2). Analyzing the optical absorption of
2L α-Te (Fig. 4.2b), we identify the onset as characterized by two peaks of relatively low intensity,
labeled as peak A at 1.23 eV and peak B at 1.26 eV, both four-fold degenerate. Notably, these
peaks are situated up to 0.28 eV below the calculated lowest QP direct band gap of 1.51 eV. This
difference precisely corresponds to the binding energy EBSE

b of the lowest bright direct exciton (A).
The relevant contributions to this excitonic state originate from transitions between valence and
conduction bands around the k-point q∗ = 2π

a (0.2125, 0.2100, 0). This is visually represented in
Fig. 4.2a, where the transitions are superimposed on the QP band structure, and in Fig. 4.3a, illus-
trating the weights of these transitions within the BZ. Exciton B instead arises from similar states
but involves the degenerate counterparts of the related bands. This difference may be attributed
to a opposite spin orientation of the degenerate bands, as suggested by Wang et al. in Ref. [136].
The distinctive chained structure of the α-phase (Fig. 4.1a) naturally reflects into a strong anisotropy
of its optical response. Examining the excitonic wavefunction depicted in Fig. 4.3d, we observe an
orientation of approximately 45° with respect to the x, y directions, spanning both intra and inter
layer regions. This orientation is attributed to the peculiar band structure around q∗, featuring
flat bottom conduction states with anisotropic effective masses. The anisotropy within this mate-
rial extends beyond the first two excitons, as illustrated in the plot presented in Fig. 4.4a. Here,
the degree of polarization (DoP), defined as the ratio between the difference and the sum of the
absorbance in the two orthogonal in-plane directions, is reported. The absorbance values in both
directions x, y, as well as their difference, are also illustrated in panels a and c of Fig. 4. The
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DoP serves as a metric to quantify the predominant portion of light absorbed in each direction at
a given photon energy. Notably, the first two excitonic peaks and small energy ranges above 1.8
eV are primarily influenced by absorption along the y direction, i.e. the direction of the chains. In
contrast, absorption along the x direction dominates in the remaining spectral regions.
The distinctive optical spectrum of α-Te can be explained by considering the chemical character-
istics of the system. In Te-based structures, chemical bonds are predominantly formed by the 5p4

electrons [170–172]. In the case of chained structures like that of 2L α-Te, each Tellurium covalently
shares two p-electrons with the two adjacent atoms along the chain. Simultaneously, the remaining
two p-electrons act as lone pairs situated between the chains. Consequently, the interaction along
the chain is strong, whereas the interaction between neighboring chains is weaker (for an extended
discussion we refer to our prior publication [167]). The stronger interaction along the chain makes it
more energetically favorable to induce excitations in the x direction, contributing to the anisotropic
optical response observed in the α-Te spectrum.
Regarding the 1L β-Te allotrope, the optical spectrum at the BSE level is depicted in Fig. 4.2d
and compared with the IQP spectrum in Fig. 3d. At the BSE level, the optical onset is marked
by a single sharp and highly intense peak at 1.46 eV (labeled A in Fig. 4.2d), corresponding to a
doubly degenerate exciton with a binding energy of approximately 0.50 eV. Notably, Pan et al. [164]
previously reported a larger binding energy (0.67 eV) due to the absence of SOC. Additionally, a
doubly degenerate, optically forbidden dark exciton is identified at a lower energy of around 1.44
eV. Intriguingly, similar to the α-phase, both the VB and the CB are degenerate, and these two
excitons share transitions at the same k-points but from different bands, causing the latter tran-
sition to be dark. The primary contributions to exciton A arise from transitions between the VB
and CB near the Γ point, particularly along the armchair kx direction (i.e., Γ → X). This is
illustrated in Fig. 4.2c, as well as in Fig. 4.3b. The second peak (B), which is four-fold degenerate,
is situated at 1.67 eV and results from transitions predominantly localized at the Γ point. The plot
of the wavefunction of exciton A reveals a significant spatial anisotropy, displaying an elongated
shape along the zigzag (y) direction (Fig. 4.3e). This observation is evident from Fig. 4.4b and
Fig. 4. Initially, optical transitions are dominant along the zigzag (y) direction, while transitions
along the armchair (x) direction are negligile up to energies of approximately 1.7 eV. In order to
provide a qualitative explanation for this substantial anisotropy, we briefly analyze some relevant
factors. We first extrapolate the electron and hole effective masses along the in-plane armchair (x)
and zigzag (y) directions, providing access to the exciton reduced masses µ. Specifically, we obtain
µx = 0.535 a.u. and µy = 0.138 a.u. The significant difference, with the latter being nearly four
times smaller than the former, justifies the observed optical anisotropy. Furthermore, we examine
the VB and CB wavefunctions at the DFT level. For simplicity, our discussion focuses exclusively
on the wavefunctions at the Γ point. While the plot of the conduction band wavefunction (Fig. 5b)
does not exhibit an apparent correlation with the optical anisotropy, the VB (Fig. 5a) reveals a dis-
tinct py-like orbital character. This observation indicates a clear orientation of the electron density,
naturally favoring the y direction for the optical response.
As for the 1L γ-Te phase (Fig. 4.2f), our calculations indicate that the first bright exciton (A)
appears at approximately 0.84 eV, which is 0.34 eV lower than the IQP onset of 1.18 eV. These
findings are in excellent agreement with the work of Villegas et al. [168]. The primary contribution
to this excitonic state arises from transitions between the doubly degenerate VB and CB at the Γ
point. This is depicted in Fig. 4.2e, as well as in Fig. 4.3c. The second exciton (B), also four-fold
degenerate, appears approximately 0.1 eV above the first one, originating from the same transitions
as exciton A but with different strengths. The third peak, located at 0.98 eV, is the most intense
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excitonic peak and originates from transitions involving k-points along the Γ →M direction, near
the VBM of the indirect gap. The localized nature of the first exciton in reciprocal space translates
into an highly delocalized excitonic wavefunction in real space, as showcased in Fig. 4.3f, where
the wavefunction exhibits marked hexagonal symmetry. In this case, the symmetry of the lattice
prevents the emergence of optical anisotropy.
By solving the BSE and examining the excitonic states [79], one can extract information about the
radiative lifetimes, which are crucial for understanding the optical properties of materials, espe-
cially in the context of radiative processes. A short radiative lifetime, less than a nanosecond (ns),
signifies rapid emission or absorption of light in the material. Practically, this indicates that the
material can swiftly transition between energy states associated with photon emission or absorption.
Table 4.2 shows that the radiative lifetimes of β- and γ-Te are significantly shorter than that of the
α-phase, suggesting that these 2D materials are well-suited for high-speed optoelectronic applica-
tions where fast response times are crucial, such as in ultrafast lasers, high-speed communication
devices, and advanced imaging systems. For solar energy harvesting, longer radiative lifetimes are
desirable. This is achieved by considering room temperature and performing a thermal average,
which includes dark excitons, resulting in radiative lifetimes of about 1 ns for both β- and γ-Te.
One further remark is worth making. In our previous work [167], we estimated the exciton binding
energies of these systems, using a 2D model introduced by Keldysh and Rytova [173, 174]. The
model has proven reliable when applied to various types of 2D systems [167, 175–177]. Also in
this case, despite the simplicity of the model, the estimates are in fairly good agreement with BSE
results. They are reported in Table 4.2, between round brackets.
In conclusion, each Te polimorph exhibits distinct optical fingerprints, enabling the potential dif-
ferentiation of one phase from another. Collectively, owing to their favorable band gaps, all these
materials predominantly absorb light in the near-infrared and visible regions of the solar spec-
trum, demonstrating remarkable intensity despite their nearly-atomic thickness. This implies the
potential use of these materials, in conjunction with other 2D materials, in hetero-structures for
innovative light-harvesting devices, as detailed in the subsequent section.

4.1.6 Tellurene for Solar Light Harvesting Applications

Two crucial prerequisites for the development of ultra-thin and efficient solar harvesting devices
involve optimizing light absorption across the solar spectrum. This includes tailoring the band gap
and absorption coefficients of the constituent layers. Additionally, it is essential to identify the
appropriate type II band alignment between two 2D materials to enhance efficient charge transfer
across them.
A convenient way for quantifying sunlight absorption is through the maximum short-circuit current
density (SCC), denoted as Jmax

sc . Under the assumption that all photo-generated charge carriers
are effectively collected, the extracted current from a solar cell can be computed as follows [77,98]:

Jmax
sc = e

∫
A(ω)Φ(ω)dω

in units of ℏ. Here Φ(ω) is the solar photon flux [169], expressed in units of cm−2s−1eV−1, A(ω)
is the optical absorbance, as presented in the previous section, and e is the elementary charge.
In Fig. 4.2 (right panels) we show the solar photon flux together with the optical absorbance of
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Figure 4.5: Comparison of the offsets alignment between our calculated 2L α-Te , 1L β-Te, 1L
γ-Te and other monolayer systems previously calculated in the literature, namely 2D-InN [178,179]
and several TMDs [180]. Yellow (cyan) regions show EA (IE ) from our GW calculations, while
red (blue ) are GW values taken from the literature. Black dashed lines show the relative alignment
from DFT calculations. In both cases, the offsets are aligned with respect to the vacuum level, which
is set to zero.

Te allotropes, which display peaks as high as 60 % and a desirable compatibility with the solar
activity in its region of maximum intensity. The calculated current densities Jmax

sc are, for the
different phases: 8.4 mA/cm2 (α-Te), 2.2 mA/cm2 (β-Te), 7.1 mA/cm2 (γ-Te), the latter in good
agreement with the value of 6.7 mA/cm2 obtained by Villegas et al. [168]. Our predicted current
densities are extraordinarily high, given the extremely small thickness of the systems. Indeed,
common amorphous (Si-H and GaAs) and organic (PH3T) solar cells show short-circuit current
densities lying around 20 to 30 mA/cm2, for sample thicknesses above 1 µm, dropping much below
1 mA/cm2 when their thickness is decreased to around 1 nm [181]. Therefore, about tens of nm of
these materials are needed to absorb the same fraction of sunlight as Te. Moreover, our results are
comparable or higher than those of most of 2D TMDs [77,98,182,183].
Given the very promising estimates of the SCC, it is worth further exploring the capability of Te
as an absorber (donor) material, in feasible light harvesting devices. An important quantity in this
context is given by the Power Conversion Efficiency (PCE) η. It can be calculated as [95,184]:

η =

FF · Voc ·
∫ ∞

Eopt
d

P (ω)

ω
dω∫ ∞

0

P (ω) dω

(4.1)

in units of ℏ. Here, FF is the fill factor, an empirical value which we take as 0.65 (a reasonable
value in a device with effective carrier transport [77]). P (ω) is the AM1.5G solar irradiance [169],
expressed in terms of W/m2. Voc is the maximum open circuit voltage, which is usually estimated
as Voc = Eopt

d −∆Ec−0.3. Indeed, Eopt
d −∆Ec is the effective interface gap, given by the difference
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Figure 4.6: Heatmap of the PCE η plotted as a function of the donor optical gap Eopt
d and of the

conduction band offsets ∆Ec, obtained by solving Eq. (4.1 ). The black dots refer to the efficiency
of the heterostructures shown in Fig. 4.5 as reported in Table 4.3. A fill factor (FF ) of 0.65 was
considered.

between the optical band gap Eopt
d of the donor material in the heterostructure (in our case, one

of the phases of Te), calculated at the BSE level, and the conduction band offsets difference ∆Ec,
calculated between the optical GW+BSE LUMO level of the donor (thus accounting for exciton
binding energy) and the GW LUMO level of the acceptor. The term 0.3 eV is empirical and
accounts for energy conversion kinetics. This combined scheme, making use of the optical LUMO
of the donor and the QP LUMO of the acceptor, takes into account the minimum energy of the
exciton formed after photo-absorption that it is assumed to occur mainly in the donor material,
as well as the electronic QP level for the transfer of the photo-excited electron to the acceptor.
Eq. (4.1) however is valid only if both Voc and ∆Ec are positive definite; that is, we have an
actual type II heterostructure. For more details, see [95, 184]. Following Eq. 4.1, we calculate the
PCE of several possible hetero-structures of Te polymorphs with other 2D materials, ranging from
InN to various TMDs. The alignment and band offsets of the considered 2D materials, shown in
Fig. 4.5, were used to estimate ∆Ec. This effective approach, known as the Anderson method [185],
has been validated as highly accurate for vdW heterostructures with similar chemistry and/or
structure, showing negligible differences compared to actual simulated heterostructures. This has
been demonstrated in studies such as Ref. [186] and references therein. The resulting efficiencies
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η are reported as a heatmap in Fig. 4.6. In particular, we see that β-Te satisfies the requirements
stated above with all the other systems (exception made for WSe2) and displays very high PCEs,
ranging between 11 and 19% (the highest being with MoSe2, WS2 and WTe2) [187]. Interestingly,
also the β-Te/γ-Te junction, with an estimated efficiency of 19%, is found to be very promising.
Overall, our calculations show very competitive PCEs, comparable or even superior to those of
other 2D hetero-bilayers previously investigated [77,97,108–112], reported in Table 4.3. It is worth
stressing again the outstanding efficiencies of these materials, in relation to their atomic thicknesses,
if compared to the current micrometric crystalline silicon devices.

Table 4.3: Calculated PCE η for Te-based junctions, compared with results taken from the literature.
All results have been obtained using FF= 0.65. Also experimental results for silicon, as a reference
value, are reported. PCE obtained within the GW-BSE approach is indicated with ∗.

System Thickness PCE (%)

Si [188] (Exp.) ∼ 100 µm 18 - 22

α-Te/β-Te∗ ∼ 1 nm 1.6

β-Te/γ-Te∗ ∼ 1 nm 19

β-Te/X∗,1 ∼ 1 nm 11 - 19

γ-Te/MoS2
∗ ∼ 1 nm 15

2L Phosphorene [97] ∼ 1 µm 16 - 18

Graphene/MoS2
∗ [77] ∼ 1 nm 1.0

WS2/MoS2
∗ [77] ∼ 1 nm 1.5

GeSe/SnSe [108] ∼ 1 nm 21

PdSe2/TMD [110] ∼ 1 nm 6 - 22

InS/GaTe [111] ∼ 1 nm 12

GaSe/GaTe [111] ∼ 1 nm 18

K2O/Cs2O [112] ∼ 1 nm 22
1X stands for all the materials shown in Fig. 4.5, apart from WSe2.

4.1.7 Conclusions

To summarize, we have presented detailed ab initio calculations of the geometry, electronic, and
optical properties of Te in its α-, β-, and γ-phases, incorporating state-of-the-art QP and exci-
tonic effects. Each system exhibits distinct optical characteristics that could facilitate experimental
differentiation among the various phases. Despite their nearly-atomic thickness, these materials
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demonstrate substantial light absorption, primarily in the near-infrared and visible range. This
observation suggests their potential use, in conjunction with other 2D materials, in novel light-
harvesting devices. We give support to this hypothesis through an analysis of the PCE of 1 nm-
thin Te-based junctions. Our findings indicate an efficiency (η) as high as 19% in heterostructures
based on β-Te and TMDs, as well as in the β-Te/γ-Te homojunction. Notably, this efficiency is
comparable to that of 100 µm-thick silicon junctions.
In conclusion, our study demonstrates how the exceptional electronic and optical properties of Te
position it as a promising candidate for highly efficient solar cell technology. Its versatility is ev-
ident not only in junctions with other 2D materials but also in homojunctions, making use of Te
polymorphism. These findings lay the groundwork for significant advancements in renewable energy
harvesting.
The results of this study are presented in two articles published during my PhD [167,189].

4.2 Tunable Second-Harmonic Generation in 2D Materials

4.2.1 Introduction

Non-linear optical frequency conversion, where optical fields interact with a non-linear medium to
generate new frequencies, is a key phenomenon in modern photonic systems. However, a major
challenge with these techniques lies in the difficulty of tuning the non-linear electrical susceptibili-
ties that drive such effects in a given material.
Recently, several experimental groups have shown interest in using external electric fields to in-
duce or modify second-harmonic generation (SHG) in 2D materials1. Two distinct strategies have
emerged: the first involves applying an electric field in the z-direction to induce an SHG response
in materials with inversion symmetry [192–194]; the second focuses on modifying the SHG response
in materials that already exhibit it, by inducing doping through an external field and a conduc-
tive substrate that supplies electrons or holes [195]. These approaches have also been combined
to induce SHG in bilayer materials with inversion symmetry [196]. In this experiment, not only
does the external field break the inversion symmetry, but the induced doping charges the two layers
oppositely, further amplifying the symmetry breaking. This phenomenon is referred to as charge-
induced SHG.
In this work, both mechanisms were investigated: inversion symmetry breaking and induced dop-
ing. For these two cases, we focus on systems where experiments have already been conducted —
a bilayer of MoS2 [192,193] for the symmetry-breaking case and a monolayer of WSe2 [195] for the
induced-doping case. A real-time approach was employed to compute the SHG and its variation in
response to external stimuli.
In recent years, the real-time propagation of the Schrödinger equation within the TDDFT frame-
work has become a widely used tool for investigating optical responses in both finite [197, 198]
and extended systems [199, 200]. This approach differs slightly from TDDFT, as it is based on
the real-time propagation of an effective many-body Hamiltonian derived from Green’s function
theory [201]. In this method, the coupling with the external field is treated using the length gauge

1In SHG, a material is irradiated with a laser at a frequency ω, and it emits light at a frequency 2ω. This
phenomenon occurs only in materials lacking inversion symmetry and is highly sensitive to the angle between the
laser and the crystal lattice. Due to this sensitivity, SHG has been employed to determine the number of deposited
layers [190] and their orientation [191].
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and formulated in terms of the dynamical Berry phase [202,203]. This approach has been employed
to study various non-linear optical responses, ranging from second- and third-order harmonic gen-
eration [201] to two-photon absorption [204]. A detailed discussion of this topic is provided in
Appendix C.

Figure 4.7: Optimized geometric structures of (a, c) 2L MoS2 and (b,d) 1L WSe2. The lattice
parameters a, the layer thickness δ and the layer distance dz are also displayed.

4.2.2 Methods

Ground-state properties of both bilayer MoS2 and monolayer WSe2 were studied using DFT with
the QE code [22,23]. We employed the GGA-PBE functional [155] with scalar-relativistic optimized
norm-conserving pseudopotentials from the PseudoDojo repository (v0.4) [157]. Atomic structures
were relaxed using a cutoff of 120 eV, a k-point sampling of 32×32×1, and the FIRE minimization
algorithm [205], with a force convergence criterion of 10−5 atomic units (see Fig. 4.7). An electric
field in the z direction, perpendicular to the layers, was applied to the bare ionic potential using a
saw-like potential, as implemented in QE. We ensured that the layers were situated in the region
where the electric field is constant. SOC was not included since it was not essential to our discussion.
Optical susceptibilities were calculated using the YAMBO code [48, 49]. QP corrections to the
fundamental band gap were applied as a rigid shift to all bands. Parameters for the linear and non-
linear response are detailed in Table 4.4. For WSe2, to accurately sample the doped configurations,
we employed a double-grid approach for the dielectric constant calculation, as described in Ref. [206].
To include excitonic effects, we used the approach described in Sec. 7 of Appendix C, called LSEX
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approximation, and employed 1 and 5 G-vectors to model the excitonic response in bilayer MoS2

and monolayer WSe2, respectively. This is sufficient to reproduce the lowest excitons in WSe2 and
the C-exciton in the MoS2 bilayer, which is responsible for the SHG response. We verified that
increasing the number of bands in the calculations does not affect the spectra within the energy
range considered, as shown in Fig. 8 of Appendix E.

Table 4.4: Parameters used in the linear and non-linear response calculations for both bilayer MoS2

and monolayer WSe2. It includes the k-point sampling, the range of bands considered, and for
WSe2, it also specifies the double-grid approach used for calculating the doped dielectric constants
(between brackets). Additionally, the table provides details on the parameters used in constructing
ϵ−1
G,G′(ω = 0), the scissor operator applied to the Kohn-Sham band structure (∆EGW), and the
effective layer thickness (∆eff) used in the SHG calculations.

System k-points Bands ϵG,G′ size ϵG,G′ bands ∆EGW ∆eff

2H-MoS2 42× 42 19 - 34 5 Ha 200 1.058 eV 1.23 nm

WSe2 21× 21 19 - 26 4 Ha 600 0.55 eV 0.648 nm

(70× 70)

4.2.3 External Electric Field

In this section, we delve into the two mechanisms considered in this manuscript that affect the
tunability of the SHG response. First, we examine the impact of an external out-of-plane electric
field, followed by the effects of induced doping. We will discuss how each of these factors influences
the second-order response functions. Numerical results will be presented in the following section.
We start by discussing the general case of a system subjected to an external field, without any
induced doping. As described in Appendix C (Eq. (21)), the polarization can be expanded in a
power series of the incident field Ej as2:

Pi(ω) =χ
(1)
ij (ω)Ej(ω)+

χ
(2)
ijk(ω;ω1, ω2)Ej(ω1)Ek(ω2)+

χ
(3)
ijkl(ω;ω1, ω2, ω3)Ej(ω1)Ek(ω2)E l(ω3) + O(E4)

where the sum over indexes is understood. The SHG corresponds to the i-th component of the
macroscopic second-order polarization

P
(2)
i (2ω) =

∑
jk

χ
(2)
ijk(−2ω;ω, ω)Ej(ω)Ek(ω) (4.2)

2Here, we make explicit all the functional dependencies.
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where, for two (input) monochromatic fields of equal frequency ω, the (output) polarization fre-
quency is equal to 2ω. For materials with inversion symmetry, such as the bilayer MoS2 studied
here, this term is zero3.
In our simulations, we apply two external fields: a static one along the z-direction and a time-
dependent one in plane. The static one is included directly in the Kohn-Sham Hamiltonian, at the
DFT level, while the time-dependent one is introduced to calculate the non-linear response. For
the in-plane field, we choose a polarization along the y direction and the polarization is recorded in

the same direction, obtaining χ
(2)
yyy = −χ(2)

xxy = −χ(2)
yyx = −χ(2)

xyx = −χ(2)
aab, that is, the only non-zero

component of the second-order susceptibility tensor for the hexagonal D3h crystal class [207], with
a and b the in-plane crystal axes. In centrosymmetric systems, χ(2) is zero if no perpendicular
static field is present. For each intensity of the perpendicular static field, we performed a series of
real-time simulations at different frequencies ω to extract the χ(2)(ω). Finally in order to obtain
a SHG signal independent of the dimension of the supercell, we rescaled the calculated χ(2)(ω) by
an effective thickness of bilayer MoS2 and monolayer WSe2 — corresponding to half of c lattice
parameter of the bulk structures.
By applying an external static electric field ∆El, an additional term contributes to the response
(4.2) at 2ω:

P
(2)
i (2ω) =

∑
jk

χ
(2)
ijk(−2ω;ω, ω)Ej(ω)Ek(ω) +

dχ
(2)
ijk(R(E),E)

dE l
∆E l (4.3)

The derivative in Eq. (4.3) can be split in two terms, an electronic and a ionic one, respectively:

dχ
(2)
ijk(R(E),E)

dE l
=
∂χ

(2)
ijk(R0,E)

∂E l

∣∣∣∣∣
El=0

+
∑
nα

∂χ
(2)
ijk(R,E = 0)

∂τnα

∣∣∣∣∣
R=R0

∂τnα
∂E l

(4.4)

where τnα = Rnα − R0,nα represents the displacement of the atom n in the direction α. The
first term in Eq. (4.4) is obtained by considering the atoms in their equilibrium positions and
accounting only for the electronic contribution to the SHG induced by the external field ∆E l.
The second term corresponds to the contribution to the SHG arising from the displacement of the
atoms in the presence of the external field. The former term is referred to as electric field-induced
second-harmonic generation (EFISHG) and can be expressed as a third-order polarizability:

∂χ
(2)
ijk(R0,E)

∂E l

∣∣∣∣∣
El=0

= χ
(3)
ijkl(−2ω;ω, ω, 0) (4.5)

The two terms in Eq. (4.4) can be calculated directly using the approach described, for example,
in Ref. [208]. However, since our goal is to study a system under the influence of a finite field, and
given the special configuration of the 2D system that allows us to directly apply a finite electric field
in the z-direction, we opted to evaluate the two terms numerically. For the first term, we analyze

3The explanation is straightforward: since both P and E are vectors, by inverting spatial coordinates (r → −r),

they must change sign, giving −P
(2)
i = χ

(2)
ijk(−Ej)(−Ek) = χ

(2)
ijkEjEk. If inversion symmetry holds, then the

two relations with inverted signs must be equal, meaning χ
(2)
ijk = 0. Thus, a system with such symmetry (called

centrosymmetric) does not naturally host SHG.



82

the electronic response while keeping the ions in their equilibrium positions. For the second term,
we relax the atomic structure and then calculate the SHG from the distorted structure without the
external field. Finally, we discuss the combined effects of both contributions.
Notably, the applied electric field does not affect the linear response of the system at any level of
theory, as demonstrated in Fig. 9 of Appendix E. Although the field modifies the band structure
by lifting the degeneracy of the valence and conduction bands, it does not alter the optical onset.
Consequently, the intensity of the peaks remains essentially unchanged.

Figure 4.8: Ionic (a) and electronic (b) contributions to the induced SHG χ(2) in bilayer MoS2. In
panel (a), we show the contribution due to the displacement of the atoms generated by the external
field. Note that after atomic relaxation, the external field is turned off to consider only the ionic
contribution. In panel (b), we present the electronic contribution to the χ(2) induced by the external
electric field for frozen ions.

Bilayer MoS2

We begin our discussion with the case of bilayer MoS2. In Fig. 4.8, we present the electronic and
ionic contributions to the SHG induced by an external electric field along the z-direction. Panel (a)
displays the electronic contribution, corresponding to the first term in Eq. 4.4, obtained without
relaxing the atomic structure, while panel (b) shows the ionic contribution, which corresponds to
the second term in Eq. 4.4. The results are normalized to an effective thickness, as explained in
Sec. 4.2.2.
We find that the ionic contribution is relatively small compared to the electronic counterpart. This
small contribution can be rationalized as follows: to induce an atomic displacement, the external
electric field must first cause a change in density, which, to linear order, is proportional to δρ ∝ χzEz.
However, due to depolarization effects, the response χz of a bilayer in the perpendicular direction
is quite small, explaining the minor ionic contribution. In contrast, the electronic contribution
is much larger because the electric field directly influences the construction of χ(3), even without
considering the induced-density effect. From these results, it is clear that the ionic contribution
in this case can be considered negligible. Therefore, in the following analysis, we will use only the
equilibrium geometry and exclude the ionic effect on χ(2). It is important to emphasize that the
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induction of SHG via an external electric field is a higher-order effect compared to the intrinsic
SHG. This implies that, although the intensity can be increased by raising the amplitude of the
applied field, the resultant signal remains significantly weaker. For comparison, the SHG signal in
monolayer MoS2 at the IPA level is shown in Fig. 7 of Appendix E.
In Fig. 4.9, we present the two highest peaks of the induced SHG as a function of the external
field. Our observations reveal a linear dependence for small fields and a quadratic dependence at
higher fields, consistent with the experimental findings reported in Ref. [192]. We also attempted
to incorporate excitonic effects into the SHG response using the parameters listed in Table 4.4.
However, due to the very small signal induced by the external field, the results were quite noisy,
and we decided not to include them in this manuscript. Nonetheless, even from these noisy results,
we are confident that excitonic effects have the potential to more than double the SHG response
in these low-dimensional systems. Recently, these effects have been investigated using a simplified
model for gated bilayer graphene. Despite its relatively simple excitonic structure, this model
captures many of the physical effects we observed in bilayer MoS2 [209].

Figure 4.9: The two highest peaks (b) of the induced SHG (a) in bilayer MoS2 as a function of the
external field.

4.2.4 Induced Doping

Doping a material can significantly alter its optical response in several ways. First, doping affects
the electronic structure, such as causing the electronic band gap to narrow. Local or semi-local
functionals often do not adequately capture this effect; instead, GW -type corrections are necessary.
These corrections directly depend on doping due to changes in the dielectric constant, which influ-
ences the definition of W (see Sec. 3.3). Specifically, doping increases screening, which reduces W
and causes a reduction of the GW corrections [210]. This electronic gap reduction has been ob-
served in various experiments [211]. Additionally, doping impacts the atomic structure by altering
bonding and lattice constants. However, these effects are not considered here because they depend
on the substrate, which is not included in the present calculations.
Beyond gap reduction, doping induces other changes in the optical response. The e-h interaction,
which depends on ε(ω), is reduced, but this effect is offset by the gap shrinking. Consequently,
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the exciton peak position remains nearly constant for small doping levels, while its intensity de-
creases [212]. At higher doping densities, this compensation fails, and the exciton peak position
increases linearly with energy. Doping also affects the availability of e-h transition channels due to
partial filling (or emptying) of conduction (or valence) bands, leading to the Pauli blocking effect,
which is significant for the lowest excitons. Furthermore, in doped systems, dynamic effects and
the formation of trions can become important. However, our current real-time dynamics approach
does not account for these effects; for a discussion, see Refs. [212,213].
In summary, our real-time approach will only consider doping effects through changes in the dielec-
tric constant, as the dynamical Berry phase approach is not applicable to metal systems, and we
have not included diagrams corresponding to trions. Ultimately, we will account for doping effects
solely through the change in the dielectric constant that influences the SEX self-energy, which is
responsible for exciton formation in our real-time dynamics:

ΣSEX[∆γ](r, r′, t) = W (r, r′) ∆γ(r, r′, t) (4.6)

W (r, r′) = ε−1(ω = 0) v(r− r′) (4.7)

For each doping level, the screened interaction W is recalculated, then the self-energy ΣSEX, and
the real-time dynamics, to determine the corresponding SHG response, is performed. Note that the
change in W induces a small shift in the exciton position, which in principle should be offset by the
shrinking of the gap. However, since we employed a rigid shift approximation, this compensation
does not occur. Nonetheless, our primary focus is on studying the changes in the SHG intensity,
and this positional shift is generally negligible in the final results. A detailed discussion of this is
provided in the next section.

Monolayer WSe2

The monolayer WSe2 lacks inversion symmetry and therefore exhibits a SHG signal even in the
absence of an external electric field. However, recent studies have explored the possibility of tuning
the SHG signal through induced doping. In its optical response, WSe2 exhibits prominent bright ex-
citon peaks that have been extensively studied both theoretically and experimentally (see Ref. [214]
and references therein). The SHG response is maximized at frequencies resonant with the exciton
peaks or at half of their energies. The lowest bright exciton peak in the linear response, known as
the A-exciton, appears around 1.65 eV and is also observable in SHG at half this energy. Using a
field-effect transistor, researchers were able to modify the intensity of the excitonic A-resonance in
SHG response, by several orders of magnitude [195].
Indeed, as explained in the previous section, doping introduces two primary effects on the non-
linear response: first, the occupation of certain conduction (or valence) bands by electrons (or
holes) makes these levels unavailable for valence-conduction transitions, leading to the so-called
Pauli blocking effect [215]; second, doping increases the screening of the electron-electron interac-
tion, which reduces the energy of the excitonic resonances. This latter effect can also be achieved
by depositing the material on different substrates—metallic, semiconductor, or insulator—thereby
altering the material dielectric screening.
Here we focus solely on the effect of doping on the dielectric constant, as our real-time formulation
based on the dynamical Berry phase formalism, does not allow to treat metallic ground states. By
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comparing our results with experimental data, we aim to understand the relative importance of
this effect compared to others and to estimate how a substrate that modifies the dielectric response
might influence the SHG spectrum.
To simulate doping, we introduced additional electron (hole) carriers along with a neutralizing uni-
form background charge. Specifically, we added a net charge doping of ≈ ± 0.05e, corresponding
to a charge density of ± 5 × 1013 e/cm2, where e is the elementary electric charge. We observed
only a minor change at the DFT level, and the dielectric constant is only slightly affected by the
doping. However, as we will demonstrate below, these small changes are sufficient to significantly
alter the SHG response.
In Fig. 4.10, we present results for three cases: undoped, positively doped with n = 0.05e (holes),
and negatively doped with n = −0.05e (electrons). We consider these extreme doping cases that
could be realized in a field-effect configuration, with intermediate doping values expected to fall
between these extremes. Our findings indicate that doping can enhance the SHG response at the
A-resonance in WSe2 by up to 25% of its intensity. This is significantly less than the order of
magnitude reduction observed experimentally [215], suggesting that other effects, such as Pauli
blocking, play a crucial role in the observed reduction. This is expected since A excitons are the
lowest energy states and are most affected by doping. Additionally, experiments have shown that
some of the intensity may be transferred to positively and negatively charged trions, which have
not been included in our calculations.
Finally, we note that our calculations show a very tiny shift in the exciton position with doping,
which is not observed at experimental level. This discrepancy arises because we used a rigid shift
for the QP structure. Ab initio calculations would account for this effect [212], as explained in the
previous section.

Figure 4.10: SHG in WSe2 for the pristine undoped, positively doped with n = 0.05e (holes), and
negatively doped with n = −0.05e (electrons) cases. Doping modifies the screened interaction W ,
Eq. (4.7) that enters in Eq. (30) of Appendix C.
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4.2.5 Conclusions

In conclusion, this work presents an ab initio study of two strategies for tuning the SHG response
in 2D systems. In the first case, we investigated a system with no intrinsic SHG due to the presence
of inversion symmetry. An external field can induce an SHG response, which remains very weak
compared to the intrinsic response of a 2D system. For this case, we found that the ionic contri-
bution is negligible, while excitonic effects have the potential to enhance the SHG response. In the
second case, we examined a system with an intrinsic SHG response and explored how doping affects
its environment. We demonstrated that changing the dielectric constant can reduce the excitonic
peak response up to 20%. This effect could be observed in TMD deposied on metalic substrates
or in TMD/graphene heterostructures [216], which also suppresses responses from charged exci-
tons. When we compare our result with the measurements of K. L. Seyler et al. [195], they find a
reduction in the SHG response at excitonic resonance of more than 80%. However, for a correct
comparison other effects should be taken into account such as Pauli blocking and the transfer of
part of the spectral weight to the trions. These effects could be excluded by using heterostructure
that generate a remote carrier screening without induce a charge on the material [217]. Overall, our
findings illustrate how 2D materials can be employed for nonlinear optical switching. This work
demonstrates the feasibility of fully ab initio simulations for predicting nonlinear optical responses
in 2D materials.
The results of this study is presented in an article published during my PhD [218].
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Results and Discussions
One-Dimensional Materials

The rapid advancements in nanotechnology have sparked increasing interest in one-dimensional
(1D) materials due to their unique physical properties and potential for downscaling in next-
generation electronic devices. Moreover, 1D systems give rise to fascinating phenomena such as
the emergence of charge-density waves [219, 220], Luttinger liquid behavior [221–223], and exciton
condensation [224].
Carbon nanotubes (CNTs) have long been emblematic of this pursuit, demonstrating remarkable
properties that position them as key building blocks for nanoscale electronics [225–229]. However,
managing CNT chirality, and thus their metallic, insulating, or semiconducting properties, presents
significant challenges that hinder their seamless integration into scalable applications. Despite these
difficulties, 1D materials remain highly compelling as pathways to extremely downscaled electronic
components [230,231], as well as excellent candidates for flexible electronics [232,233].
In recent years, more complex techniques have enabled the growth of ultrathin nanowires. For
instance, multi-walled carbon nanotubes (MWCNTs) have been used to confine the growth of 1D
transition metal trichalcogenides (TMTCs), as HfSe3, within their cavities [234, 235]. Single-atom
chains have also been realized through encapsulation inside single-walled carbon nanotubes (SWC-
NTs) [236].
An alternative approach to obtaining freestanding nanowires with diameters of only a few atoms is
through directed-agent synthesis [237,238]. This method has successfully produced Cu-S inorganic
core wires with a cross-section of only three atoms, representing the smallest freestanding inorganic
nanowires to date [237]. In addition, several techniques for growing 1D nanowires on suitable sub-
strates have emerged [239–245]. The substrate interactions help stabilize the 1D wires, though they
may also alter the intrinsic 1D properties of the material [246,247].

87
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5.1 Exfoliable 1D Semiconducting Materials from
High-Throughput Screening

5.1.1 Introduction

Discovering novel 1D systems has proven of great scientific interest over the past few years. A
promising new approach for isolating single nanowires involves three-dimensional crystals, where
strongly intra-chain bonded inorganic wires are held together by weak vdW interactions [248,249].
In these materials, individual 1D wires are weakly coupled by interchain forces, forming highly
anisotropic 3D systems. The wires can potentially be exfoliated from the bulk using mechanical or
chemical exfoliation [230,231,250,251], similar to the exfoliation techniques used for 2D materials,
suitable for mass production. Exfoliated atomic wires have great potential for scaled electron-
ics due to their lack of edge scattering [248, 249]. Unlike CNTs, exfoliated 1D wires would have
well-defined, reproducible electronic properties. These wires could also prove highly beneficial for
photovoltaic applications. Their chain-like structure has no dangling bonds along the orthogonal
direction, minimizing recombination losses. This is particularly advantageous in materials like BiSI,
BiSeI, Sb2Se3, and Bi2Se3, which are promising candidates for high-efficiency solar cells [252,253].
One notable example is the recent exfoliation of TaSe3 into nanowires or bundles as thin as 7 nm in
lateral dimension [230,254,255]. TaSe3 has undergone chemical and mechanical exfoliation, akin to
the techniques used for graphene and MX2 materials, to reduce the lateral dimensions of the bun-
dles. Other materials, such as ZrTe3, HfSe3, MoI3 and TiS3 have also been successfully exfoliated
from their vdW crystals using various techniques [231,251,256,257].
High-throughput (HT) materials discovery is an exceptionally powerful tool that allows for the
determination of the properties and functionalities of a vast number of materials from first princi-
ples, using significantly less time and resources compared to experimental studies. HT studies have
already identified a broad range of promising 2D materials suitable for exfoliation into atomically
thin layers [258–265], and applying similar approaches to identify new atomic wires is an emerging
area of research [266–269]. In recent decades, 1D systems have received significantly less attention
compared to their 2D counterparts. The extension of 2D data mining algorithms to identify 1D
systems was first conducted in Refs. [261,264]. In both cases, weakly-bonded subunits of one-, two-,
or even mixed-dimensionality were identified, demonstrating the power of high-throughput studies.
Currently, these databases contain around 500 exfoliable 1D wires, with the number expected to
grow significantly due to element substitution and recent advancements in machine learning meth-
ods [269, 270]. The rapid development of HT searches for 1D materials suggests that this is an
exciting and emerging field with vast potential.
In this context, Cignarella et al. [271] performed a high-throughput screening of experimentally
known compounds, building a database of over 800 1D systems that could be exfoliated from
known 3D vdW crystals. The three-dimensional materials used as the starting point for the screen-
ing were sourced from three databases: the Crystallographic Open Database (COD) [272], the
Inorganic Crystal Structure Database (ICSD) [273–275], and the Pauling File [276], comprising a
total of 782,632 compounds. All the structures considered were experimentally reported in their
3D forms. These 815 systems were then optimized in their isolated 1D form using DFT, and their
basic properties, such as band structures, were characterized. Finally, the dynamical stability of all
structures was assessed by calculating their phonon dispersions.
In the search for building blocks for downscaled electronic devices, we identify, drawing from the
above database, novel exfoliable atomic wires that are mechanically stable against common in-
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stabilities, offering great promise for future applications. Here, we characterize some of the most
promising candidates, investigating their electronic and optical properties at the DFT and MBPT
level, with a focus on potential optoelectronic applications.

5.1.2 Methods

In this study, DFT and MBPT calculations were performed to investigate the electronic and opti-
cal properties of four different 1D materials (S3, Te3 As2S3, Bi2Te3)1, selected for their mechanical
stability and optimal DFT bandgap. For the DFT part, the QE integrated suite [22, 23] was
used. To account for SOC and include semi-core electrons, a norm-conserving, fully-relativistic
pseudopotential from the PseudoDojo repository (v0.4) [157] was employed, using GGA-PBE XC
functional [155]. Upon convergence, kinetic energy cutoffs of 110 (S3), 70 (Te3), 80 (As2S3) and 100
(Bi2Te3) Ry were chosen. A uniform Monkhorst-Pack k-point mesh with dimension of 1 × 1 × 12
was employed. To prevent interaction between periodic replicas, a minimum vacuum region of 16
Å along the non-periodic (xy) directions was introduced. Structural relaxation was considered con-
verged when the maximum component of the residual ionic forces dropped below 10−8 Ry/Bohr.
From the obtained DFT eigenvalues and eigenvectors, MBPT calculations were carried out, using
the YAMBO code [48,49], specifically using the G0W0 and eigenvalue self-consistent GW (evGW )
methods for QP corrections and the BSE [158–161] for e-h interaction. These calculations allowed
to account for many-body effects and accurately describe the electronic and optical properties of
the materials. Energy cutoffs of 47899, 77897, 59075, and 47115 number of G-vectors were used
for the exchange part of the self-energy Σx, while 12, 12, 20, and 12 Ry were used for the corre-
lation part of the self-energy Σc, respectively for S3, Te3, As2S3 and Bi2Te3. Additionally, 1582
(S3), 1402 (Te3), 1452 (As2S3) and 622 (Bi2Te3) empty bands 2 were included in the calculation of
the Σc. A cylindrical cutoff to the Coulomb potential along the non-periodic directions (xy) was
used, as implemented in the YAMBO code [49]. For the BSE Hamiltonian, a total of 12 occupied
states and 8 unoccupied states (S3), 12 and 12 (Te3), 14 and 12 (As2S3), and 8 and 8 (Bi2Te3)
were employed. The convergence with respect to the k-points for the BSE calculations was carefully
checked, and the following k-point grids were used: 1×1×48 (S3, Te3, As2S3) and 1×1×84 (Bi2Te3).

5.1.3 Structural Properties

The 1D materials presented here (Fig. 5.1) were identified from a HT screening database [271],
as described in Sec. 5.1. The screening provided preliminary DFT calculations, including phonon
dispersion, relaxation, and band structure. After a first selection, each material underwent an
additional full-structure relaxation to obtain optimized lattice parameters and atomic positions
using the chosen XC functional. These values are reported in Table 5.1. The structures of S3

(Fig. 5.1a) and Te3 (Fig. 5.1b) both consist of a chiral helical chain composed of three atoms,
arranged so that the projection of the chain onto a plane forms an equilateral triangle. Such
structure is typical of chalcogen elements, even for higher dimensions (see Sec. 4.1). The unit cell
of As2S3 (Fig. 5.1c) consists of two As atoms and three S atoms, which are alternately bonded to

1The nomenclature used corresponds to the number of atoms of each atomic species in the unit cell.
2Convergence with respect to empty states has been proven to be a critical factor in 1D systems. For further

details, we refer the reader to Appendix F.
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form a network of non-planar hexagons. Additionally, there is an extra S atom attached to each
hexagon (through an As atom), protruding towards its center. The structure of Bi2Te3 (Fig. 5.1d)
is specular to that of As2S3, Bi and Te replacing As and S, respectively.

Figure 5.1: Optimized geometric structures of (a) S3, (b) Te3, (c) As2S3 and (d) Bi2Te3. The
optimized lattice parameters are also displayed. Credits to [271] for the structures provided.

Table 5.1: Optimized lattice parameter (a) of the different systems studied, obtained by full-structure
relaxation using a GGA-PBE XC functional.

S3 Te3 As2S3 Bi2Te3

a (Å) 4.414 5.697 3.540 4.342

5.1.4 Electronic Properties

In this section, we analyze the band structures of the four different materials under study, first
obtained at the DFT level and then refined using GW corrections. Given their dimensionality,
these materials exhibit exceptionally flat bands, which may harbor a range of exotic properties yet
to be investigated, while this also complicates the clear identification of the electronic band gap.
The DFT band structures are shown in Fig. 5.2, and the corresponding band gaps are listed in
Table 5.2. S3 is an indirect-gap semiconductor wire with an estimated electronic gap of 2.66 eV
(Fig. 5.2a). The CBM is located at the high-symmetry Z point, while the VBM is located between
the Γ and Z points of the SOC-split flat valence band. The band structure of Te3 shows many
similarities to that of S3. It is indeed an indirect-gap semiconductor with an estimated electronic
gap of 1.43 eV (Fig. 5.2b). Both the VBM and the CBM are located near the high-symmetry Z
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point. The smallest direct electronic gap is only 40 meV greater and it is located close to the Z
point. As2S3 and Bi2Te3 exhibit similar structures and band structures, and both are significantly
influenced by SOC. As2S3 is an indirect-gap semiconductor with an electronic band gap of 1.16
eV (Fig. 5.2c). In this material, the CBM is located at the Γ point, while the VBM is situated
between the Γ and Z points. In contrast, Bi2Te3 is a nearly-direct narrow-gap semiconductor with
an electronic band gap of 0.419 eV (Fig. 5.2d). Here, the VBM is located at the Γ point, and the
CBM is very close to the Γ point. Indeed, the direct band gap at Γ is only 2 meV larger than the
indirect band gap.
Starting from the DFT eigenstates and eigenvalues, the QP-corrected bands were calculated. It
is important to note that these calculations were significantly affected by the strong dependence
of the empty states on the cell vacuum, which hindered the convergence of most key quantities in
MBPT. For further details, refer to Appendix F.
The extremely low screening in 1D systems necessitates the use of a methodology similar to that
used for isolated systems. To address this, single-shot G0W0 calculations were followed by eigenvalue
self-consistent calculations on both G and W (referred to as evGW ). The details of this approach
are discussed in Sec. 3.6.3, and the results are presented in Table 5.2. In S3, the gap is corrected to
5.46 (G0W0) and then to 6.26 eV (evGW ). In Te3, the gap increases from 3.47 (G0W0) to 4.27 eV
(evGW ). In As2S3, from 2.28 (G0W0) to 3.07 eV (evGW ). Finally, in Bi2Te3, from 1.42 (G0W0) to
1.64 eV (evGW ). Remarkably, in this case the electronic band gap undergoes an indirect-to-direct
transition, as the QP correction at Γ ends up to be higher than the ones at neighboring k-points.
In the next section, we will discuss the absorption spectra of these materials, based on the QP
states corrected by the GW approximation, as calculated at the BSE level.

Table 5.2: Calculated lowest direct (d ) or indirect (i ) electronic band gaps (Eg), at the DFT, G0W0

and evGWg level, together with the BSE optical gaps (Eo) and the corresponding binding energies
(Eb) of the lowest bright exciton. In the case of indirect band gap, the corresponding direct band
gap is also reported in square brackets. SOC was included.

EDFT
g EG0W0

g EG0W0+BSE
o EG0W0+BSE

b EevGW
g EevGW+BSE

o EevGW+BSE
b

S3 2.66 (i) 5.46 (i) 3.61 1.94 6.26 (i) 4.06 2.29

[2.76] [5.55] [6.35]

Te3 1.43 (i) 3.47 (i) 1.38 2.13 4.27 (i) 2.15 2.16

[1.47] [3.51] [4.31]

As2S3 1.16 (i) 2.28 (i) 1.43 0.89 3.01 (i) 2.62 0.45

[1.26] [2.32] [3.07]

Bi2Te3 0.419 (i) 1.42 (d) 0.66 0.76 1.64 (d) 0.81 0.83

[0.421]



92

Figure 5.2: Electronic band structures of (a) S3, (b) Te3, (c) As2S3 and (d) Bi2Te3, calculated at
the DFT level, using a GGA-PBE XC functional. SOC was included. The energies were rescaled
with respect to the VBM. The zero level is highlighted with a red dotted line.

5.1.5 Optical Properties

Low screening in low-dimensional systems, and particularly in 1D materials, plays a crucial role in
enhancing excitonic effects, which are prominent in the optical absorption spectra of such materials.
Due to the reduced dimensionality, electrons and holes experience stronger Coulomb interactions,
as screening is less effective in 1D compared to bulk systems. This leads to the formation of tightly
bound excitons with large binding energies, significantly influencing the optical properties. The
absorption spectra, calculated at the BSE level using evGW -corrected QP states, are presented in
Fig. 5.4. For comparison, the spectra derived from G0W0-corrected states are shown in Fig. 5.3.
Overall, the effect of self-consistency leads to a blueshift in the optical spectra, without altering the
underlying transitions. Thus, for the sake of brevity, we focus our discussion on the evGW+BSE
spectra. The corresponding optical band gaps are reported in Table 5.2, together with the relative
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binding energies of lowest bright excitons.

Figure 5.3: Absorption spectra (solid black) of (a) S3, (b) Te3, (c) As2S3 and (d) Bi2Te3, expressed
in terms of percentage of the optical absorbance A(ω), calculated at the G0W0+BSE level. SOC was
included. The corresponding G0W0-corrected direct electronic band gaps (dashed red) are shown as
a reference. A broadening of 50 meV was used.

As shown in Fig. 5.4, for S3 and Te3, the spectra consist of a series of transitions that are relatively
well-separated in energy, resembling what one might expect from an isolated system. Similar to such
systems, the lowest energy excitations, located in the near UV (S3) and in the visible (Te3) range,
exhibit a significant binding energy (around 2 eV), indicating the highly localized nature of the
corresponding excitonic wavefunction. This is confirmed by the plot of the excitonic wavefunctions
displayed in Fig. 5.5a and b. In S3 (Fig. 5.3a), two prominent excitations appear below the direct
bandgap (6.35 eV), followed by two smaller peaks. The first excitonic peak occurs at 4.06 eV, with
a binding energy of 2.29 eV, and marks the onset of optical absorption. The corresponding excitonic
wavefunction is depicted in Fig. 5.3a, exhibiting a localized character. It arises from transitions
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involving the first three (degenerate) occupied bands and the (doubly-degenerate) conduction band,
at the Γ point. The second peak (4.51 eV) stems from transitions involving the doubly-degenerate
valence band and the doubly degenerate second conduction band at the Γ point. The two smaller
peaks near the gap (at 5.89 and 6.17 eV) are also localized at the Γ point and primarily involve
transitions from lower occupied bands to higher unoccupied bands. In this case, the first dark
excitation occurs at 3.05 eV. Regarding Te3 ( Fig. 5.3b), the optical spectrum consists (up to
10 eV) of distinct sharp peaks, with several excitations below the band gap. The first bright
exciton appears at 2.15 eV, approximately 2.16 eV below the material’s direct electronic band gap
(4.31 eV), which corresponds to the lowest (bright) exciton binding energy. The related excitonic
wavefunction, illustrated in Fig. 5.5b, extending across five unit cells in the periodic direction. Not
surprisingly, this excitonic wavefunction is very similar to that of S3. The transitions contributing
to this peak involve the fourth valence band and the second empty band near the Z point.

Figure 5.4: Absorption spectra (solid black) of (a) S3, (b) Te3, (c) As2S3 and (d) Bi2Te3, expressed
in terms of percentage of the optical absorbance A(ω), calculated at the evGW+BSE level. SOC was
included. The corresponding evGW -corrected direct electronic band gaps (dashed red) are shown as
a reference. A broadening of 50 meV was used.
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Figure 5.5: Excitonic wavefunction plots in direct space for(a) S3, (b) Te3, (c) As2S3 and (d)
Bi2Te3, calculated using the YAMBO code. The position of the hole was chosen based on the
localization of the valence electrons contributing to the exciton. The number of cell repetitions in
the periodic direction was increased until the wavefunction decayed to zero.

Interestingly, the excitations involving transitions between the valence band and the conduction
band — starting with the first at 1.83 eV — are mostly dark, meaning no optical absorption occurs
around the band gap energy. The only exception is the most intense excitonic peak below the gap,
around 3.3 eV, which has minor contributions stemming from these bands.
In contrast to the first two cases, the spectra of As2S3 and Bi2Te3 resemble a continuum of transi-
tions, similar to those observed in most periodic systems. Also, these materials exhibit low binding
energies (< 1 eV), resulting in a more delocalized excitonic wavefunction, as shown in Fig. 5.3c
and d. In As2S3 (Fig. 5.3c), two excitations appears below the gap (3.07 eV) which represent the
optical onset3. Occurring at 2.62 and 2.87 eV, these two excitations fall within the blue region
of the visible spectrum and exhibit small binding energies of 0.45 and 0.2 eV, respectively. The
first one arises from transitions involving the first two doubly degenerate occupied bands, primarily
at k-points near Γ, and the first two doubly degenerate unoccupied bands. The corresponding
excitonic wavefunction (Fig. 5.3c) is highly delocalized, extending over 9 unit cells. Similarly, the
second excitation involves transitions between the first two doubly degenerate occupied bands and
the first three doubly degenerate unoccupied bands at the Γ point. In this case, the first dark exci-
tation occurs at 1.73 eV. Finally, in Bi2Te3 ( Fig. 5.3d) the excitations below the gap (1.64 eV) are
composed of several transitions, the lowest occurring at 0.81 eV, thus in the near IR region. This

3From the diagonalization of the BSE Hamiltonian, we identified three low-lying excitonic states with non-zero
(but negligible) oscillator strengths. As a result, we chose not to include these states in the discussion.
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gives a binding energy of 0.83 eV, which is again significantly lower than the previous two materials.
Indeed, the corresponding excitonic wavefunction (Fig. 5.3d) displays a very delocalized character.
This first excitation, as well as the others below the gap, arises from transitions involving the the
(doubly-degenerate) valence band and the (doubly-degenerate) conduction band, in an extended
with very small dispersion nearby Γ. The first dark excitation occurs at 0.77 eV.

5.1.6 Conclusions

In this study, we present a novel ab initio investigation of real 1D materials, identified through
HT screening of a database of potentially exfoliable atomic wires. We explored the electronic and
optical properties of four promising 1D materials — S3, Te3, As2S3, and Bi2Te3 — using DFT
and MBPT, including GW corrections and BSE calculations. These materials exhibit unique band
structures with flat bands and substantial band gap separations, indicating potential for exotic
electronic phenomena. S3 and Te3 show significant exciton binding energies, indicative of highly
localized excitonic states, while As2S3 and Bi2Te3 exhibit a continuum of transitions with smaller
binding energies.
Given these properties, S3 and Te3 are promising candidates for optoelectronic applications, par-
ticularly in UV- and visible-absorption devices due to their strong excitonic effects. The lower
exciton binding energies and broader absorption spectra of As2S3 and Bi2Te3 make them suitable
for photovoltaic and infrared applications. These findings suggest that exfoliable 1D wires could be
key materials for future nanoscale electronic and optoelectronic technologies.
The results of this study will be the subject of a future publication.
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Results and Discussions
Zero-Dimensional Materials

Zero-dimensional (0D) materials, such as quantum dots, nanoclusters, and molecules, have emerged
as a significant class of nanomaterials due to their unique electronic and optical properties. In
these materials, all three spatial dimensions are confined to the nanoscale, typically less than 10
nm, leading to a discrete energy level structure rather than the continuous band structure seen in
periodic materials.
In 0D materials, the quantum confinement effect plays a central role in their electronic and optical
properties. When the size of a material — in one or more directions — approaches the order
of magnitude of the de Broglie wavelength of the electrons (or holes), their movement becomes
restricted, leading to the quantization of energy levels. This effect causes the material’s electronic
and optical properties to depend strongly on the particle size. For instance:

• The energy gap increases as the size of the 0D material decreases, resulting in tunable electrical
characteristics.

• The absorption and emission spectra are size-dependent. Smaller particles exhibit blue-shifted
optical spectra, while larger particles exhibit red-shifts.

The electronic properties of 0D materials are largely governed by their confined geometry. As men-
tioned, the quantum confinement leads to a discrete set of energy levels, which mimics the behavior
of atoms. Electrons can only occupy specific energy states, making these materials highly tunable
for electronic applications. These discrete energy levels result in sharp absorption and emission
peaks, unlike the broader spectra observed in bulk materials. This property is useful for appli-
cations in light-emitting diodes (LEDs) and lasers. The interaction between electrons and holes,
forming excitons, plays a key role in determining the optical response. In 0D materials, the exciton
binding energy increases significantly due to spatial confinement, leading to enhanced excitonic
effects that are observable even at room temperature.
The unique combination of electronic and optical properties of 0D materials makes them highly
versatile in a range of advanced technological applications, from optoelectronic devices to quantum
information technologies [277–280]. The continued exploration of the behavior of 0D materials
promises to drive advances in nanotechnology, providing new insights into fundamental physics as

97



98

well as practical innovations in industry and medicine.

6.1 Tunable Electric-Field-Driven Terahertz Splitting
in Polyyne C18 Carbon Ring

6.1.1 Introduction

The terahertz (THz) range, often referred to as the ”terahertz gap”, bridges the gap between mi-
crowave and infrared frequencies in the electromagnetic spectrum, boasting a wealth of portable,
affordable, coherent sources and detectors that can operate at room temperature [281,282]. Oper-
ating in the frequency range of approximately 0.1 to 10 THz, this technology is known for its unique
capabilities, including high-resolution imaging and spectroscopy. THz radiation, with wavelengths
ranging from millimeters to sub-millimeters, can penetrate a variety of materials, providing valuable
insights in fields such as security screening, material science, and medical diagnostics.
One approach to addressing this THz gap is through low-dimensional carbon structures [283]. Car-
bon, one of the most abundant elements in nature, is renowned for its ability to form a wide variety
of allotropes. Carbon atoms can form multiple covalent bonds with other elements, leading to a
diverse range of structures and compounds. This versatility results in a broad spectrum of prop-
erties and applications. In recent decades, new carbon allotropes have been discovered, sparking
new fields of basic research and practical applications. Notable examples include fullerenes [284],
carbon nanotubes [225], and graphene [285]. Another interesting form of carbon allotropy is the
long linear carbon chains [286]. These chains are categorized as cumulene when composed of a
sequence of double bonds of equal length, or as polyyne when they feature alternating short (triple)
and long (single) bonds [287]. When carbon atoms form a closed cyclic chain, it is referred to as
cyclo[n]carbon (CC), which can also adopt either a polyyne or cumulene form [288–291]. Unlike
conjugated π-bond systems like fullerenes, nanotubes, or graphene, which have a coordination num-
ber of three, CC allotrope has a coordination number of two.
In recent years many experimental studies were conducted to observe carbon rings. Despite their
apparent simplicity, these systems present significant challenges from both synthetic and theoret-
ical perspectives. One of the most significant recent achievements is the successful synthesis and
characterization of the closed-circle polyyne containing 18 sp-hybridized carbon atoms, known as
cyclo[18]carbon (C18). Kaiser et al. [292, 293] characterized C18 using high-resolution AFM. Their
AFM study, corroborated by computational simulations, confirmed the polyynic (D9h) structure of
C18 adsorbed on a bilayer NaCl on a Cu(111) surface at 5 K [294]. The synthesis of C18 has opened
new avenues for research, and understanding the electronic structure of this material is crucial for
elucidating its properties and interactions [295,296].
Prior to this experiment, there was significant theoretical debate regarding the most stable struc-
ture of C18

1. Numerous electronic structure calculations of C18 have been conducted at var-
ious levels of theory. These include HF [301–303], Self-Consistent Field (SCF) [288, 304, 305],
Multi-configurational SCF (MCSCF) [290], Møller-Plesset Perturbation Theory (MP2) [304, 305],
DFT [287,289,291,303,304,306–313], Coupled Cluster with Single and Double excitations (CCSD)
[288, 291], and Quantum Monte Carlo (QMC) [290]. However, only HF, QMC, and CCSD meth-

1Calculations have predicted the ground-state structure of C6 [297–299] and C10 [299, 300]. However, for higher
members of the C4n+2 series, theoretical results remain contradictory.
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ods are able to successfully predict the polyyne structure as the ground state. Indeed, even most
common DFT hybrid functionals (such as B3LYP, BLYP, and PBE0) predict the non-bond-length
alternating cumulene structure as ground state geometry for C18. Many studies [290,294,311–313]
attribute the failure of DFT to its overestimation of electronic correlation effects at the expense of
exchange energy, demonstrating that increasing the HF exchange component in an XC functional
tends to stabilize the polyyne structure over the cumulenic one2, leading to the experimentally
observed structure of C18.
Since the first synthesis in 1989 [301], CCs have drawn particular attention due to the compet-
ing many-body effects of Hückel aromaticity3, the second-order Jahn-Teller effect (SOJTE), and
Peierls instability at larger sizes. These effects lead to possible ground-state structures with aro-
matic, bond-angle, or bond-length alternated geometries. Notably, odd- and even-dimer rings have
been shown to alternate in their relative stability [306, 314–316]. For instance, in C4n+2 rings, the
SOJTE causes the single-triple bond alternation typical of the polyyne structure [317]. In these
rings, the SOJTE can lead to spontaneous symmetry breaking, removing degeneracy and creating
an intrinsic gap between previously degenerate levels.
THz radiation generation can occur by lifting energy level degeneracy in semiconducting quantum
rings via magnetic and in-plane electric fields [318–320]. In a recent work, by exploiting a tight-
binding model, Ng et al. [321] demonstrated that the absence of inversion symmetry results in a
striking contrast between odd- (C4n+2) and even-dimer (C4n) polyynic rings. Indeed, in C4n+2

rings the degeneracy splitting is linear with respect to the applied electric field, while C4n rings
preserve inversion symmetry, preventing linear splitting. By tuning an external electric field, the
THz range can be reached, making CCs a potential candidate for THz applications.
Inspired by this work, by means of DFT and MBPT calculations, we explore the potential of C18

rings under experimentally achievable in-plane electric fields for THz generation.

6.1.2 Methods

In this work, two different approaches have been employed to investigate the electronic and optical
properties of the C18 ring, providing a comprehensive understanding of how these properties are
modified under the influence of an electric field.
The first approach utilizes a PW-based method within the framework of DFT, as implemented in the
QE package [22, 23]. A norm-conserving, scalar relativistic pseudopotential from the PseudoDojo
repository (v0.4) [157], with a kinetic energy cutoff of 90 Ry, was used. The optimal polyyne geom-
etry was obtained through atomic relaxation, using the range-separated hybrid functional HSE [21]
based on the GGA-PBE XC functional. A high fraction of HF exchange, a = 0.8 (see Sec. 2.3.7),

2As a general rule, choosing the correct functional method is essential for predicting the accurate geometry of
these highly delocalized structures. To date, only functionals with a high proportion of exact-like exchange (not
lower than 40%) or those incorporating exchange range-separation have been successful in correctly predicting the
polyyne structure as the most stable, contrary to conventional semi-local or standard hybrid functionals, which favor
the cumulene form. It is important to note that the degree of density localization in both polyyne and cumulene
forms differs, and density functionals are known to suffer from delocalization error, which significantly impacts result
accuracy. This error tends to increase with system size, making it challenging to draw solid conclusions without a
systematic investigation.

3Notably, CCs exhibit “double” aromaticity due to the delocalization of two sets of π-electrons: one set lies in
the plane of the ring and the other is perpendicular to it. This concept of double aromaticity was first introduced by
Diederich et al. [301] and further developed by Fowler et al. [303]. Moreover, in C4n+2 carbon rings, Hückel’s rule
for aromaticity adds stability to the rings.
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was employed, as suggested by previous studies [292,313]. After convergence, a vacuum distance of
≈ 13 Å along the in-plane (xy) directions and ≈ 20 Å in the out-of-plane (z) direction were used to
prevent spurious interactions with periodic replicas. To avoid overestimating the HOMO-LUMO
gap, subsequent calculations were performed using a standard GGA-PBE functional. The inclu-
sion of SOC lifts the spin degeneracy (≈ 1 meV) but does not change the value of the degeneracy
splitting due to the electric field, so it was not considered in the following investigations.
Based on the DFT results, the electronic structure calculations were further refined using MBPT
via the YAMBO code [48,49], to study the excited-state properties. Single-shot G0W0 calculations
were followed by eigenvalues self-consistent calculations on both G and W (see Sec. 3.6.3), which
is essential for isolated systems such as CCs, where the gap is typically underestimated. This pro-
cedure also eliminates dependence on the initial DFT results. Finally, optical absorption spectra
were computed at the BSE level on top of the QP-corrected eigenvalues, accurately accounting for
excitonic transitions. Further details about the parameters used in the calculations are reported in
Sec. 6.1.5.
In the second approach, a Gaussian-type orbitals (GTOs) basis set method was employed, using
the MOLGW code [322] (see Appendix B). This method is well-suited for finite systems and en-
ables accurate treatment of localized orbitals and electronic excitations. This allows for a detailed
analysis of electronic and optical properties, offering a robust comparison with PW-based results.
Starting from the relaxed polyyne structure, both DFT — using a GGA-PBE XC functional —
and MBPT calculations were performed. The aug-cc-pV5Z basis and the aug-cc-pV5Z-RI auxiliary
basis — which represent the most refined GTOs of their kind — were used, after careful convergence
tests. Core states were neglected. Also in this case, eigenvalues self-consistent GW calculations
were performed, up to convergence. BSE calculations were performed on top of the QP-corrected
eigenvalues.
In both cases, an in-plane static electric field was applied to the system, and the results were com-
pared with those obtained in the unperturbed state. The details of these calculations are discussed
in Sec. 6.1.4.

6.1.3 Structural Properties

The final stable polyyne structure of C18, shown in Fig. 6.1, exhibits short bonds (l1) measuring
1.204 Å and long bonds (l2) measuring 1.359 Å, consistent with previous studies [292,301,313]. This
structure was obtained by carefully adjusting the HF exchange fraction in the selected XC hybrid
functional. As shown in Table 6.1, starting from the default value of a = 0.2, a transition from a
cumulene to a polyyne structure occurs at values greater than 0.4, resulting in larger differences
in bond lengths. We confirmed that there were no significant differences between various types of
hybrid functionals, including PBE0, B3LYP, and HSE. However, the range-separated hybrid func-
tional HSE was selected because standard hybrid functionals tend to overestimate the band gap for
the same exchange fraction.
It is important to note that the structural change between the cumulene and polyyne forms is
minimal. The difference in bond lengths — from equal bonds in the cumulene to alternating short
and long bonds in the polyyne form — is less than 0.16 Å. This indicates that the transition path
from the cumulene structure to the polyyne structure is small and is accompanied by only slight
changes in bond angles. These changes are relatively insignificant when compared to the overall
radius of C18, which is approximately 3.7 Å. Moreover, tests conducted on even-dimer CCs (C4n),
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specifically C16 and C20, demonstrated that no such transition occurs in these systems, even for
exchange fractions as high as 0.8. This finding is crucial for understanding the behavior of CCs
under an applied electric field, as will be discussed in the following sections.

Figure 6.1: Optimized polyyne (D9h) structure of C18 ring, relaxed using the range-separated hybrid
functional HSE [21] based on the GGA-PBE XC functional. A high fraction of HF exchange of
a = 0.8 was employed, as suggested by previous studies [292,313].

A detailed analysis of the frontier orbitals of C18 reveals distortions in some orbitals, leading
the molecule to adopt a less symmetric structure than expected for a CC. These distortions, not
detected in C4n rings, are explained by the interaction between the excited-state and ground-state
eigenfunctions of the unstable cumulene structure. We refer the reader to Ref. [313] for further
details.

Table 6.1: Evolution of the bond length (l1 and l2) and relative structure type of the C18 ring as a
function of the HF exchange fraction used in the HSE hybrid functional.

HF Exchange Fraction l1 (Å) l2 (Å) Structure Type

0.2 1.278 - cumulene (D18h)

0.4 1.234 1.325 polyyne (D9h)

0.6 1.215 1.347 polyyne (D9h)

0.8 1.205 1.359 polyyne (D9h)
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6.1.4 Electronic Properties: Field-Induced Degeneracy Splitting

At this stage, the electronic properties were investigated using the QE DFT package, which employs
a PW basis set.

Figure 6.2: Tuning of the HOMO (black) and LUMO (red) degeneracy splitting, as a function of
the applied electric field amplitude, in the C18 ring. A 4 meV (i.e. 1 THz) degeneracy splitting is
achieved with an electric field intensity of ≃ 13 × 10−5 a.u. ≃ 6.7 × 107 V·m−1. This value is of
the same order of magnitude as predicted by Ng et al. [321], who also foresaw a linear dependence
of the splitting with respect to the intensity of the applied field. Calculations were performed using
the QE DFT package, employing standard GGA-PBE XC functional.

Starting from the optimized polyyne geometry, as described in the previous section, calculations
were performed using the standard GGA-PBE functional to avoid overestimating the HOMO-
LUMO gap. First, we explored the possibility of tuning the degeneracy splitting of the HOMO and
LUMO levels. To achieve this, an in-plane (static) electric field of increasing amplitude was applied,
using a saw-like potential. As shown in Fig. 6.2, the splitting of these levels follows a nearly perfect
linear trend as a function of the field amplitude. Our results indicate that an electric field intensity
on the order of 10−5 a.u., equivalent to 107 V·m−1, is required to achieve a degeneracy splitting of
the HOMO and LUMO levels in the THz range, corresponding to few meV energy differences. For
example, an amplitude of approximately 13× 10−5 a.u. (≃ 6.7× 107 V·m−1) induces a splitting of
exactly 1 THz, i.e., 4 meV. This result aligns very well with the predictions of Ng et al. [321], who
estimated a value of 1.8×107 V·m−1 to achieve a 1 THz splitting, using tight-binding calculations.
In the same study, Ng et al. also predicted a linear dependence of the splitting on the applied field
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intensity. Notably, they found this behavior to occur only for odd-dimer rings, specifically C4n+2

rings. In contrast, for even-dimer rings (C4n), the electric-field-driven splitting of the HOMO and
LUMO levels is proportional to the product of the square of the electric field amplitude and the
ring radius R. Given the small size of R, which ranges from 3.3 to 4.2 Å as one moves from a C16

to a C20 ring, the splitting becomes unobservable at reasonable field amplitudes4.

Figure 6.3: Energy levels of the C18 ring without (blue, left) and with (red, right) applied electric
field (EF ≃ 13×10−5 a.u. ≃ 6.7×107 V·m−1), as calculated with the QE DFT package, employing
standard GGA-PBE XC functional. Energies where rescaled with respect to the pristine HOMO
level. The DFT HOMO-LUMO gap was estimated to be 2.69 eV (without) and 2.68 eV (with),
respectively. (a) Focus of the frontier states in the absence of electric field, showing no relevant
degeneracy splitting. (b) Focus of the frontier states with applied electric field, showing a degeneracy
splitting of ≃ 4 meV, i.e. 1 THz.

As discussed in Sec. 6.1, in C4n+2 rings, the SOJTE can induce spontaneous symmetry breaking,
lifting the degeneracy and creating an intrinsic gap between previously degenerate levels. This is
evident in Fig. 6.2, where even in the absence of a field, an initial splitting of approximately 0.2
meV is observed. In contrast, this splitting does not occur in C4n rings. Notably, such splitting,
which is essential for further tunability via an electric field, can only be detected in even-dimer
rings through ab initio calculations.
Fig. 6.3 presents the calculated energy levels around the HOMO-LUMO gap of the C18 ring, both

4Indeed, by repeating the simulations for C16 and C20 rings, we were able to demonstrate ab initio that this is
the case, even for fields as high as 1011 V·m−1.



104

without (blue, left) and with (red, right) an applied electric field of ≃ 13 × 10−5 a.u. ≃ 6.7 × 107

V·m−1. The DFT GGA-PBE HOMO-LUMO gap was estimated to be 2.69 eV (without) and 2.68
eV (with), respectively. In the absence of an electric field, the frontier states do not exhibit signifi-
cant degeneracy splitting, as shown in the left panel of Fig. 6.3. However, when the electric field is
applied, a splitting of exactly 4 meV is observed, corresponding to a frequency of 1 THz.

6.1.5 Electronic Properties: Many-Body Approach

The underestimation of the gap is a well-known issue in DFT (see Sec. 2.3.3) and it is generally more
pronounced in 0D systems for several reasons, especially due to the local or semi-local nature of the
XC functionals used in DFT. This problem can sometimes be addressed using hybrid functionals,
particularly range-separated functionals like HSE, which is employed in this Thesis. However, even
with these advanced functionals, systems such as CCs still face a significant underestimation of the
exact exchange. As a result, the HF exchange fraction must be substantially increased to achieve
accurate results. While this approach is effective for obtaining the correct polyyne geometry in
C4n+2 rings (as discussed in Sec. 6.1.3), it may negatively affect the accuracy of the HOMO-LUMO
gap. Therefore, we opted to use a standard GGA-PBE functional as a starting point to include QP
corrections using the GW approach.
In this study, both a PW- and a GTO-based approach were employed to calculate the many-body
corrections to the electronic levels, respectively using the YAMBO code [48, 49] and the MOLGW
code [322]. In both cases, single-shot G0W0 calculations were followed by eigenvalues self-consistent
calculations on both G and W (evGW ). To the best of our knowledge, these are the first reported
MBPT calculations involving C18 rings.
We start the discussion with the former approach. The DFT KS states were initially calculated
using the GGA-PBE XC functional, both without and with an applied electric field, employing
the QE package, as discussed in the previous section. We chose a field amplitude of ≃ 13 × 10−5

a.u. ≃ 6.7 × 107 V·m−1 to obtain an initial splitting of exactly 1 THz. In the following MBPT
calculations, an energy cutoff of 60 (6) Ry was used for the exchange (correlation) part of the self-
energy Σx (Σc), while 64 empty bands (72 in the electric field case) were included in the calculation
of Σc. A spherical cutoff to the Coulomb potential was used, as implemented in YAMBO [49]. In
the absence of an electric field, the starting HOMO-LUMO gap was 2.69 eV. Single-shot G0W0

calculations corrected this gap to 5.66 eV, while the evGW approach yielded a gap of 6.28 eV,
converging in three steps within a threshold of less than 0.02 eV. With the applied electric field, the
DFT-calculated HOMO-LUMO gap of 2.68 eV was corrected to 5.50 eV using G0W0, and further
refined to 6.07 eV after self-consistency. These values are reported in Table 6.2. Notably, the effect
of the electric field on the DFT wavefunctions and levels results in a moderate reduction of the
HOMO-LUMO gap at the GW level.
The GTO-based approach was also used to calculate the QP-corrected states both without and with
an applied electric field. All values are reported in Table 6.2. The same XC functional was used
in the DFT calculations, yielding a HOMO-LUMO gap of 2.68 eV, both without and with electric
field. The G0W0 corrections returned a gap of 5.93 (without) and 5.81 (with) eV, while the self-
consistency yielded a final value of 6.75 eV, both without and with electric field, converging in five
steps within a threshold of less than 1 meV5. This value is ≈ 0.5 eV higher than the corresponding

5The fact that we obtained the same evGW band gap is not surprising, given the negligible difference between
the starting DFT eigenvalues.
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PW one6.
At this stage of the study, it is unclear whether the discrepancy should be solely attributed to
the different approaches used in the calculations. For example, in YAMBO, the 0th step of the
self-consistency in GW corresponds to a single-shot GW calculation. However, this is not the case
in MOLGW, which employs a different strategy7. Another important difference between the two
approaches is that YAMBO employs the PPA (see Sec. 3.6.1) to calculate the QP corrections.
This method may introduce error propagation through the self-consistency steps in the evGW
calculation. Finally, the starting DFT electronic wavefunctions are constructed using different basis
sets: GTOs, which are naturally localized, and plane waves PWs, which are highly delocalized.

Table 6.2: HOMO-LUMO gaps at the DFT (EDFT
g ), single-shot (EG0W0

g ) and eigenvalue self-

consistent (EevGW
g ) GW level, calculated using both a PW-based and a GTO-based approach —

without and with an applied electric field (EF ) of ≃ 13×10−5 a.u. ≃ 6.7×107 V·m−1. Optical gaps
were calculated, at the BSE level, upon G0W0- (EG0W0+BSE

g ) and evGW -corrected (EevGW+BSE
g )

electronic states. The corresponding lowest excitonic binding energies (Eb) are reported. All energies
are express in eV.

Approach EDFT
g EG0W0

g EG0W0+BSE
g EG0W0+BSE

b EevGW
g EevGW+BSE

g EevGW+BSE
b

PW 2.69 5.66 2.96 2.70 6.28 3.62 2.66

PW (EF) 2.68 5.50 2.90 2.60 6.07 3.52 2.55

GTO 2.68 5.93 3.88 2.05 6.75 5.17 1.58

GTO (EF) 2.68 5.81 3.94 1.87 6.75 5.17 1.58

6.1.6 Optical Properties

In this section, we focus on the optical properties of the C18 ring, specifically its absorption spectra,
both without and with an applied electric field, using the approaches discussed in the previous
sections at different levels of theory.
We begin our analysis by examining the results obtained by the PWs approach, specifically the
spectra obtained using the QE package at DFT IPA level (see Sec. 3.8.1). Since the differences
between the spectra with and without the applied electric field are negligible, we limit our discussion
to the former case8, as shown in Fig. 6.4. Following a similar approach to Sec. 4.1, we express the
optical spectra in terms of the optical absorbance, as described in Sec. 3.8.8. This definition ensures
that the results are independent of the choice of simulation cell. The onset of the optical transitions,
corresponding to the DFT optical gap, coincides with the HOMO-LUMO gap (≃ 2.69 eV). The
transitions contributing to the first peak in the spectrum originate from the occupied HOMO and
HOMO-1 states (which correspond to the split pristine HOMO level, see lower panel b in Fig. 6.3)

6In comparison, calculations using hybrid functionals (with HF exchange fraction of 0.8) yielded HOMO-LUMO
gaps of 7.73 eV (PBE0) and 5.32 eV (HSE), at the DFT level.

7In the single-shot GW , MOLGW solves the QP equation using a graphical solution.
8The amplitude of the applied field is the same as describe in the previous sections. This means that the degeneracy

splitting of the HOMO and LUMO levels is equal to 4 meV, i.e. 1 THz.
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Figure 6.4: Absorption spectrum (solid black), calculated at the DFT IPA level, with an applied
electric field of ≃ 13 × 10−5 a.u. ≃ 6.7 × 107 V·m−1, using the QE package. The spectrum
is expressed in terms of the optical absorbance. The underlying energy levels are those shown
in Fig. 6.3 (in red). The DFT HOMO-LUMO gap of 2.69 eV (dashed red) is also reported. A
broadening of 25 meV was used.

and the unoccupied LUMO, LUMO+1, LUMO+2, and LUMO+3 states (corresponding to the
pristine LUMO and LUMO+1 levels, see upper panel b in Fig. 6.3).

In contrast, the second peak arises from transitions involving the occupied HOMO-2 and HOMO-3
states (corresponding to the split pristine HOMO-1 level, see lower panel b in Fig. 6.3) and the same
unoccupied LUMO, LUMO+1, LUMO+2, and LUMO+3 states. This important result suggests
that, at the DFT level, a C18 ring subjected to a constant electric field is optically active primarily
in the visible range (blue-violet). In principle, an electron could be excited from an occupied frontier
state to, for instance, the LUMO+1 level. This electron would eventually de-excite back to a lower
energy state, either below or above the gap. In the latter case, a transition from the LUMO+1 to
the LUMO could occur, potentially leading to the emission of a photon in the THz regime. As we
will see, this description is incomplete and lacks important levels of theory necessary for an accurate
portrayal of the physics of the system.
To achieve a more precise understanding, we must rely on more advanced and refined methods of
investigation. Following the same PW approach, we now discuss our results pertaining to state-of-
the-art BSE calculations. As detailed in the previous section, first the KS states obtained within
DFT were corrected using MBPT with the YAMBO code. Then the BSE spectra were calculated,
based on both the QP-corrected G0W0 and evGW states. For constructing the BSE Hamiltonian,
we used a total of 8 occupied and 8 unoccupied states without an applied electric field, and 6
occupied and 6 unoccupied states when an electric field was applied. The results are presented in
Fig. 6.5 and calculated optical gaps are reported in Table 6.2. A key observation from these findings
is that the optical transition corresponding to the QP-corrected HOMO-LUMO gap is quenched in
all the cases under examination.
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Figure 6.5: G0W0+BSE (solid black ) and evGW+BSE (solid red ) spectra, without (a) and with
(b) an applied electric field, of the C18 ring, calculated with the YAMBO code. The estimated G0W0

(5.66 (a), 5.50 (b) eV) and evGW (6.28 (a), 6.07 (b) eV) HOMO-LUMO gaps are denoted by black
and red dashed lines, respectively. A broadening of 25 meV was used.

We found that this effect is entirely due to the BSE calculations, as the IQP spectra exhibit only a
rigid shift of the IP spectra. We now focus our analysis on the excitonic transitions, beginning with
the spectra obtained without an applied electric field (see Fig. 6.5a). In the G0W0+BSE spectrum,
the first weak excitation, corresponding to the optical onset, occurs at 2.96 eV, with an estimated
binding energy of 2.70 eV. This excitation arises from transitions involving the occupied states
HOMO, HOMO-1, HOMO-2, HOMO-3 and the unoccupied states LUMO, LUMO+1, LUMO+2,
LUMO+3. Interestingly, these transitions are alternately coupled, with HOMO and HOMO-1 cou-
pled to LUMO+2 and LUMO+3, and HOMO-2 and HOMO-3 coupled to LUMO and LUMO+1.
This alternating coupling holds for all other transitions, which also involve higher and lower energy
states. In contrast, the first dark excitation, located at 2.64 eV, arises primarily from a HOMO-
LUMO transition. The self-consistency increases the QP HOMO-LUMO gap from 5.66 to 6.28 eV,
causing all excitations to blueshift, the first peak now occuring at 3.62 eV, with a binding energy
of about 2.66 eV. The overall nature of the transitions remains unchanged, although the intensity
of the higher-energy peaks increases. Similarly, the first dark excitation is blueshifted to 3.31 eV.
When a static electric field is applied, the entire spectrum undergoes a redshift, and the intensity
of the excitation peaks slightly decreases (see Fig. 6.5b). Notably, the most intense peak present in
the absence of the field is now entirely quenched. However, the nature of the excitations remains
unchanged, as analyzed in the previous case. The G0W0+BSE (evGW+BSE) optical onset is now
located at 2.90 (3.52) eV, thus giving a binding energy of about 2.60 (2.55) eV, as reported in Table
6.2. Overall, the effect of the electric field does not significantly alter the optical absorption of the
ring, with the energies being redshifted by a maximum of only 0.2 eV.
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Figure 6.6: G0W0+BSE (solid black ) and evGW+BSE (solid red ) spectra, without (a) and with
(b) an applied electric field, of the C18 ring, calculated with the MOLGW code. The estimated
G0W0 (5.93 (a), 5.81 (b) eV) and evGW (6.75 eV) HOMO-LUMO gaps are denoted by black and
red dashed lines, respectively. A broadening of 25 meV was used.

We continue our discussion by analyzing the results obtained by the GTOs approach, with the
optical absorption investigated at the BSE level using the MOLGW code, both without and with
applied electric field. The GTO-based approach is undoubtedly more suitable for handling finite
systems, and these results are expected to be more reliable than those obtained using the PW
approach. The resulted spectra are shown in Fig. 6.6. The BSE calculations on G0W0-corrected
energy levels (Fig. 6.6) returned an optical gap of 3.88 (without, Fig. 6.6a, solid black) and 3.94
(with, Fig. 6.6b, solid black) eV. This gives an estimated binding energy of the lowest bright exciton
of 2.05 (without) and 1.87 (with) eV, about 0.7 eV lower than the corresponding PW calculations.
The lowest dark excitations are instead located at 2.06 (without) and 1.98 (with) eV. Also in this
case, all HOMO-LUMO transitions are dark or sensibly quenched. The self-consistency increases
the QP HOMO-LUMO gaps, with the resulting spectra being blueshifted. The first optically active
excitations are now located at 5.17 eV (both with and without electric field, Fig. 6.6a-b, solid red),
with a binding energy of 1.58 eV, about 1 eV lower than the corresponding PW calculation. In this
case, the lowest dark excitation is instead located at 2.89 eV, with all other HOMO-LUMO transi-
tions dark or sensibly quenched. Overall, the electric field only slightly modifies the optical response
at the G0W0+BSE level. While the field induces a splitting in the degeneracy of the HOMO and
LUMO levels, its strength is insufficient to significantly alter the system’s optical properties.

6.1.7 Towards THz Applications: Size vs Electric Field

To conclude this investigation, we will briefly discuss the relevance of these results in the context of
potential optoelectronic applications for THz technologies. Although ab initio calculations confirm
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the possibility of tuning the HOMO and LUMO level splitting in the THz regime, by applying a
reasonably intense in-plane static electric field, the magnitude of the estimated optical gaps (which
are located in the UV range), along with the optical inactivity of the HOMO(-1)-LUMO(+1)
transitions, somehow limits the potential use of C18 rings in practical optoelectronic devices.

Figure 6.7: Linear (R2 = 0.999789) and quadratic (R2 = 0.999986) best-fit of the HOMO-LUMO
GGA-PBE gap of C4n+2 polyyne rings for increasing number of carbon atoms N = 4n + 2 (with
N = 18, 22, 26, 30), as a function of 1/N . Extrapolated values (N → ∞) of the gap: 1.11 eV for
the linear and 1.23 eV for the quadratic fit.

To this end, Encouraged by the recent synthesis of C18 [292, 293], we explored the possibility of
reducing the energy gap by increasing the size of the ring. Odd-dimer CCs exhibit similar physical
properties, allowing for the tuning of energy levels in the THz regime. In Fig. 6.7, the HOMO-LUMO
GGA-PBE gap of C4n+2 polyyne rings, with an increasing number of carbon atoms N = 4n + 2
(N = 18, 22, 26, 30), is plotted as a function of 1/N . By fitting the calculated gaps linearly and
quadratically, we extrapolated gap values of 1.11 eV and 1.23 eV, respectively, as N → ∞. For
instance, a C36 ring, double the size of C18, would have a DFT gap of approximately 1.90 eV. Using
the results obtained for C18 as a reference, the evGW -corrected gap would increase to about 5.50
eV in the PW approach and around 6.00 eV in the GTO approach. This implies that the binding
energy for the lowest optically active excitation would lead to an optical gap of approximately 2.8
eV and 4.39 eV, respectively. Finally, applying an electric field could further reduce these gaps by
0.1 to 0.2 eV. While these are rough estimates, these findings suggest that with continued research
and refinement, polyyne rings may offer viable pathways for THz optoelectronic applications.
A more conservative approach involves increasing the amplitude of the applied field. Our calcula-
tions indicate that even when the field amplitude is increased by up to two orders of magnitude,
the linear splitting trend remains intact. For instance, a field amplitude of 13× 10−4 a.u. (approx-
imately 6.7 × 108 V·m−1) results in a degeneracy splitting of about 40 meV. When the amplitude
is increased to 13 × 10−3 a.u. (approximately 6.7 × 109 V·m−1), the degeneracy splitting rises up
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to around 400 meV.

Table 6.3: HOMO-LUMO gaps at the DFT (EDFT
g ), single-shot (EG0W0

g ) and eigenvalue self-

consistent (EevGW
g ) GW level, calculated using a GTO-based approach, with an applied electric

field of ≃ 13 × 10−5 a.u. ≃ 6.7 × 107 V·m−1 (denoted as low field, LF ) and ≃ 13 × 10−3 a.u.
≃ 6.7 × 109 V·m−1 (denoted as high field, HF ). Optical gaps were calculated, at the BSE level,
upon G0W0- (EG0W0+BSE

g ) and evGW -corrected (EevGW+BSE
g ) electronic states. The corresponding

lowest excitonic binding energies (Eb) are reported. All energies are express in eV.

Approach EDFT
g EG0W0

g EG0W0+BSE
g EG0W0+BSE

b EevGW
g EevGW+BSE

g EevGW+BSE
b

GTO (LF) 2.68 5.81 3.94 1.87 6.75 5.17 1.58

GTO (HF) 2.20 5.00 2.07 2.93 6.00 3.12 2.88

Figure 6.8: evGW+BSE spectra of the C18 ring, with an applied electric field amplitude of ≃
13 × 10−5 a.u. ≃ 6.7 × 107 V·m−1 (solid light blue, denoted as low field, LF ) and of ≃ 13 × 10−3

a.u. ≃ 6.7 × 109 V·m−1 (solid blue, denoted as high field, HF ), calculated with the MOLGW code.
The estimated evGW (6.75 and 6.00 eV) HOMO-LUMO gaps are denoted by black and red dashed
lines, respectively. A broadening of 25 meV was used.

It is thus intriguing to examine how the electronic and optical properties evolve as the field strength
increases. To this end, we compare two cases: a field amplitude of 13 × 10−5 a.u. (approximately
6.7 × 107 V·m−1), referred to as the low field (LF) case — discussed in previous sections — and
a field amplitude of 13 × 10−3 a.u. (approximately 6.7 × 109 V·m−1), referred to as the high field
(HF) case. The calculated electronic and optical gaps are presented in Table 6.3. We observe that,
as the field amplitude increases, the DFT electronic gap decreases from 2.68 eV to 2.20 eV, leading
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to significantly lower QP-corrected gaps in both the single-shot (5.00 eV) and self-consistent (6.00
eV) GW calculations. On top of QP-corrected levels, the absorption spectra, at the BSE level,
were also computed. For simplicity, we focus our discussion on the evGW+BSE results. The corre-
sponding spectra are displayed in Fig. 6.8. Notably, we observe the emergence of an excitonic peak
significantly lower in energy than those detected at lower field intensities. It stems from transitions
involving the occupied levels from HOMO-3 to HOMO and the unoccupied levels from LUMO to
LUMO+3, thereby including the THz-split frontier states. This peak shifts the optical gap from
5.17 (LF) to 3.12 (HF) eV, placing it within the range between visible light and near UV. This
paramount result opens up new possibilities for efficient light absorption and emission in THz tech-
nology. Moreover, the presence of THz-split frontier states indicates that the material can support
strong excitonic interactions, which are vital for the realization of novel photonic devices. These
interactions may enhance the efficiency of THz generation and detection processes. The ability to
manipulate the optical gap through external fields could lead to the development of tunable THz
sources and detectors.
Further experimental validation and detailed theoretical studies will be crucial for advancing the
potential use of these systems in next-generation THz technologies.

6.1.8 Conclusions

In conclusion, this study provides a comprehensive exploration of the electronic and optical prop-
erties of the C18 ring, employing both PW and GTO approaches to reveal the intricate effects of
an applied electric field. To the best of our knowledge, this work provides the first reported results
on the topic.
Through detailed calculations using DFT and MBPT, we demonstrated that an electric field can
effectively tune the degeneracy splitting of the HOMO and LUMO levels, achieving a noteworthy
splitting in the THz range. The observed behavior aligns with prior theoretical predictions, high-
lighting the unique properties of odd-dimer carbon rings, such as C4n+2, which exhibit spontaneous
symmetry breaking and an intrinsic gap even in the absence of an electric field.
Additionally, the analysis of the optical absorption spectra revealed that the C18 ring remains
predominantly optically active in the UV range, with excitonic transitions primarily involving the
frontier states. While the application of an electric field induces slight modifications to the optical
response, including redshifts in energy levels, the fundamental nature of the excitations remains
largely intact. However, further investigations suggests that increasing the amplitude of the field
could sensibly reduce the optical gap, with the emergence of excitonic peaks in the visible range,
opening new possibilities for efficient light absorption and emission in THz technology.
These findings underscore the potential of C18 rings for applications in THz technologies and op-
toelectronic devices, paving the way for further investigations into the tunability of their electronic
and optical properties through external perturbations.
The results of this study will be the subject of a future publication.
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Chapter 7

Conclusions

This Thesis has presented an in-depth ab initio investigation into the electronic and optical prop-
erties of low-dimensional materials, including 2D, 1D, and 0D systems. By employing advanced
computational techniques such as DFT and MBPT, we have gained significant insights into the
unique properties and potential applications of these materials in optoelectronic technologies.
In the study of 2D materials, we discovered substantial light absorption in the near-infrared and
visible ranges of tellurene polymorphs. These properties make tellurene an excellent candidate for
novel light-harvesting devices. The predicted PCEs of tellurene-based heterostructures were found
to be competitive, even surpassing some previously investigated 2D hetero-bilayers, with efficiencies
reaching up to 19%. Furthermore, we explored how SHG in MoS2 and WSe2 can be induced and
modulated by the application of an electric field or by charge doping. This tunability in SHG re-
sponse suggests potential applications in frequency doubling, all-optical signal processing, and the
development of novel optoelectronic devices that exploit non-linear optical phenomena.
Our investigation into 1D atomic wires — including S3, Te3, As2S3, and Bi2Te3 — revealed unique
band structures and significant exciton binding energies. S3 and Te3 demonstrated strong excitonic
effects, suggesting their suitability for UV- and visible-range absorption applications. In contrast,
As2S3 and Bi2Te3 exhibited broader absorption spectra with lower exciton binding energies, in-
dicating their potential for photovoltaic and infrared applications. These findings highlight the
promise of exfoliable 1D wires as novel key materials for future nanoscale electronic and optoelec-
tronic technologies.
The research on 0D materials focused on the potential of C4n+2 polyyne rings for THz applications.
with a focus on the C18 ring . By examining the electronic and optical properties under an ap-
plied electric field, we identified a linear relationship between the electric field and the degeneracy
splitting of the HOMO-LUMO levels. Although the optical gaps of C18 rings are located in the
UV range, which limits their immediate application in THz technologies, we showed that increasing
the amplitude of the applied field sensibly reduces the optical gap, with the emergence of excitonic
peaks in the visible range, opening new possibilities for efficient light absorption and emission in
THz technology.
Overall, this work demonstrates the rich potential of low-dimensional materials, particularly in ad-
vancing optoelectronic technologies. The findings lay the groundwork for future experimental val-
idation and the exploration of these materials in practical applications, including light-harvesting
devices, non-linar optics, UV-absorption technologies, and potentially THz optoelectronics. Fur-
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ther research in this direction will continue to uncover the diverse and innovative applications that
low-dimensional materials can offer.
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Appendix A

Response Functions

The aim of MBPT is to study how a system behaves under the action of an external perturbation,
which is generally weak. This perturbation can induce finite polarization due to charge redistribu-
tion, charge/spin density waves, or plasmonic excitations. The quantity that describes this response
of the system is called the response function.
Consider a generic Hamiltonian Ĥ = Ĥ0 + Ĥ1(t), where Ĥ1(t) = θ(t)Û1(t) is the perturbed, time-
(and generally space-) dependent part of the Hamiltonian. The response functions describe the
change in the expectation value of an operator Ô(t)1. If we limit ourselves to linear response
theory2, considering only the first-order response function, we obtain the Kubo formula [32, 33]:

δ ⟨N | Ô(t) |N⟩ =

∫ t

0

dt′ ⟨N | [Ĥ1(t), Ô(t)] |N⟩ (1)

which describes the variation of the observable, represented by the operator Ô(t), at time t due to
a perturbation switched on at t = 0. We can express a general form of the interacting part of the
Hamiltonian as Ĥ1(t) =

∫
drϕ(r, t)B̂(r), where ϕ(r, t) is the external perturbation and B̂(r) is an

operator acting on the system. In this way, we can rewrite Eq. (1) as

δ ⟨N | Ô(t) |N⟩ =

∫
dt′
∫
drχ(r, r′, t− t′)ϕ(r′, t′)

where we have defined a (retarded) correlation function χ(r, r′, t− t′), the so-called linear response
function:

χ(r, r′, t− t′) = −iθ(t− t′) ⟨N | [Ô(r, t), B(r′, t′)] |N⟩ (2)

Now, we should consider what happens when our electronic system, where the electrostatic inter-
action is described via the instantaneous Coulomb potential v(|r − r′|) = 4π

|r−r′| is perturbed by a

longitudinal external potential ϕ(r, t) = Vext(r, t). This is physically interpreted as the injection
of an external charge into the system. Under the action of this field, the system may react by
reorganizing its charge density ρ(r, t) in an attempt to create an opposing polarization field. This

1We consider the operator in the Heisenberg representation.
2Indeed, this is the regime where most of the spectroscopic measurements are performed.
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results in a variation δρ(r, t), called the induced charge density, which generates a modification of
the total potential: Vtot = Vext +Vind, where Vind is the new induced potential, described classically
as

Vind(r, t) =

∫
dr′ v(|r − r′|)δρ(r′, t) (3)

In this case, the interacting term of the Hamiltonian is

Ĥ1(t) =

∫
dr ρ(r, t)Vext(r, t)

Using Eq. (1), we obtain the induced charge density as:

δρ(r, t) =

∫
dr′
∫
dt′ χ(r, r′, t− t′)Vext(r

′, t′) (4)

where we have defined the reducible polarizabilty

χ(r, r′, t− t′) = −iθ(t− t′) ⟨N | [ρ(r, t), ρ(r′, t′)] |N⟩

=
δρ(r, t)

δVext(r′, t′)
(5)

A complete and exhaustive mathematical treatment of this topic is beyond the scope of this Thesis.
For more detailed information, we refer the reader to specific references [32,33]. Here we just show
that the polarizability χ can be rewrite in the Fourier space to show its explicit analytic structure

χ(r, r′, ω) =
∑
i

[
fi(r)f∗i (r′)

ω − Ωi + iη
+

fi(r
′)f∗i (r)

ω + Ωi + iη

]
(6)

The quantities fi(r) are defined as the oscillator strengths of the i-th transition contributing to
the excited state of the system. The poles Ωi = EN

0 − EN
i are the exact excitation energies of

the interacting N -particle system. The first (second) term of Eq. (6) is defined as the resonant
(antiresonant) part of the polarizability χ.
If we now consider a a non-interacting system, and its corresponding ground state, by using Eq. (6)
we can define the independent-particle polarizability as:

χ0(r, r′, ω) =
∑
i,i′

(fi − fi′)ϕi′(r)ϕ∗i (r)ϕ∗i′(r
′)ϕi(r

′)

ω − ωi,i′ + iη
+ antiresonant (7)

Now the quantities fi and ωi,i′ = ϵi − ϵi′ represent the occupation number and the excitation
energies in the independent-particle case. For periodic systems, described in a PW basis, Eq. (7)
assumes a tensorial form in the reciprocal space:
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χ0
GG′(q, ω) = 2

∑
nm

∫
BZ

dk

(2π)3
ρnm(k,q,G)ρ∗nm(k,q,G′)fn,k−q(1 − fmk)

×
[

1

ω + ϵn,k−q − ϵmk + i0+
− 1

ω − ϵn,k−q + ϵmk − i0+

]
(8)

where the ρnm(k,q,G) = ⟨nk| ei(q+G)·r |mk− q⟩ are the dipole matrix elements of orbital pairs,
also known as screening matrix elements. The matrix elements ρnm implicitly contain a delta
function of q and G. The wavevector q of the absorbed photon is in most cases very small compared
to any reciprocal lattice vector G ̸= 0. Thus, for optical transitions, the only non-vanishing terms
in Eq (8) are those with G = G′ = 0.
As already shown throughout this Thesis, to practically compute Eq. (8), the integral over the BZ
is transformed into a discrete sum:

∫
BZ

dk

(2π)3
→ 1

NkΩ

∑
k

Microscopic Dielectric Function

Using Eq. (3) and (4), the total potential Vtot can be expressed as a response to the external
potential as

Vtot(r, t) = Vext(r, t) + Vind(r, t)

= Vext(r, t) +

∫
dt′′
∫
dr′′

∫
dr′v(|r− r′′|)χ(r′′, r′, t− t′)Vext(r

′, t′)

=

∫
dt′
∫
dr′ε−1(r, r′, t− t′)Vext(r

′, t′)

where we have defined the inverse microscopic dielectric function

ε−1(r, r′, t− t′) = δ(r− r′)δ(t− t′) +

∫
dr′′v(|r− r′′|)χ(r′′, r′, t− t′) (9)

For periodic systems, using a PW basis and Fourier-transforming in space and time, Eq. (9) reads:

ε−1(q, ω) = δGG′ + v(q + G)χGG′(q, ω) (10)

where the G are reciprocal lattice vectors, q is a vector in the first BZ, and the v(q+G) = 4π
|q+G|2

is the Fourier transform of the Coulomb interaction. The physical meaning of the total field Vtot is
now clear: it represents the screened interaction that the electrons (or, more generally, the particles
in the system) experience. This interaction is generated partly by the external field and partly by
the response of all the charges to it. We can then define the screened Coulomb interaction W as:
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WGG′(q, ω) = ε−1
GG′(q, ω)v(q + G′) (11)

= v(q + G) + v(q + G)χGG′(q, ω)v(q + G′)

= v(q + G) +W p
GG′(q, ω)

where, following the notation of Ref. [33], we defined W p
GG′(q, ω) as the polarization contribution

to the screened interaction. It is important to note that this contribution is dynamic, as indicated
by its frequency dependence. This represents the momentum-energy (or space-time) response of
the system to the external perturbation. It is convenient to our scope to define the irreducible
polarizability χ̃, starting from Eq. (5), as3:

χ̃(r, r′, t− t′) =
δρ(r, t)

δVtot(r′, t′)
(12)

If we expand the functional derivative of Eq. (5) in terms of Vtot and use Eq. (12), we obtain the
Dyson equation for the reducible polarizability:

χ = χ̃+ χ̃vχ

which gives us the solution, written in PW basis:

χGG′(q, ω) = [δGG′ − v(q + G′′)χ̃GG′′(q, ω)]−1χ̃G′′G(q, ω) (13)

which is the fundamental result of this section. Starting from Eq. (13), it is common to set χ̃ equal
to the independent-particle polarizability χ0 (8), obtaining:

χGG′(q, ω) = χ0
GG′(q, ω) +

∑
G′′

χ0
GG′′(q, ω)v(q + G′′)χG′′G′(q, ω) (14)

This allows to partially solve the many-body problem of charged excitations.
Within the time-dependent DFT (TDDFT) formalism, Eq. (14) is often rewritten as:

χGG′(q, ω) = χ0
GG′(q, ω) +

∑
G2,G′′

χ0
GG2

(q, ω)[v(q + G2)δG2,G′′ + fxcG2,G′′ ]χG′′G′(q, ω) (15)

where fxc is the XC kernel, defined as the functional derivative of the XC potential Vxc with respect
to the density. Naturally, this kernel is not known exactly and must be approximated, similar to
how Vxc is treated in standard DFT.

3This is often denoted as P , see Sec. 3.5
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Macroscopic Dielectric Function and Local-Field Effects

Microscopic quantities are generally local both in space and time, such as ε−1(r, r′, t−t′). However,
their macroscopic counterparts must be represented by averaging the microscopic quantities. This
averaging allows us to transition from microscopic to macroscopic quantities, such as absorption
or energy loss spectra. According to Eq. (10), the dielectric function can be obtained from the
reducible polarizability as

ε−1(q, ω) = δGG′ + v(q + G)χGG′(q, ω) (16)

The average procedure connecting the microscopic properties to the macroscopic quantities can be
performed in two ways. In Chapter IV, for Eq. (3.46) it was assumed that, for optical transitions,
G = G′ = 0 and q → 0, and the average was taken directly in ε by setting G = G′ = 0, i.e.,

εM(ω) = lim
q→0

εG=G′=0(q,ω) (17)

However, from Eq. (3.41) we see that the total electric field E is related to the applied field D as
E = ε−1D. Therefore, it is more correct to take the average on ε−1 [33, 41] as

ϵM(ω) = lim
q→0

1

[ϵ−1(q, ω)]G=G′=0
(18)

Eq. (17) and (18) are equal only if the dielectric matrix is diagonal in G, G′, which is not the case
in realistic solids4. In real materials, the inhomogeneity of the density distribution leads to internal
electric fields, known as local fields, which vary over distances comparable to the lattice constant.
These local-field effects (LFE) can be significant in spectroscopies because they account for the fact
that all elements in the dielectric matrix contribute to a single element of the inverse matrix. The
macroscopic dielectric function without local-field effects, given in Eq. (17), is an approximation
which is usually valid for delocalized states for which the electronic density is more homogeneous.
However, for transitions involving localized states (like d states), the local fields are more important
and one should use Eq. (18).
In the long-wavelength limit (i.e. vertical transitions), this allows us to compute the photoabsorption
spectrum5 as

Abs (ω) = Im εM(ω)

The macroscopic dielectric function is not simply the reciprocal of the head of the matrix ε(q, ω),
but rather the reciprocal of the first element of its inverse. This definition effectively mixes all the
G,G′ components when performing the inversion. The physical reason for this method is that an
external perturbation induces charge fluctuations and potentials at both macroscopic (described by
the long-range part G = 0) and microscopic (short-range, G ̸= 0) levels. By including these short-
range effects (the LFE), we account for the inhomogeneity of the system and accurately describe
experiments that probe shorter distances with increasing momentum transfer.

4It holds only for the homogeneous electron gas.
5More precisely, the absorption signal is defined by the absorption coefficient α(ω) ∝ ω

Im [εM(ω)]
Re [n(ω)]

, n(ω) being the

refractive index. Anyhow, in general, its frequency dependence is generally well captured by the sole Im εM(ω).
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Appendix B

Excited-State Calculations of Isolated Systems

The application of excited-state calculations to finite systems dates back to the origins of these
methods [323]. Over the following decades, there has been increasing interest in studying the ex-
cited states of atoms, molecules, and clusters [324–329]. This interest has been partly driven by
the need to develop efficient techniques to address mixed systems, such as molecular junctions,
and to characterize nanostructured architectures. Historically, MBPT-derived methods have been
implemented in PW basis set algorithms, which posed practical challenges, particularly in terms of
convergence, when calculating isolated or finite systems compared to extended periodic systems.
In this context, it is advantageous to use a code that combines the accuracy of GW -BSE calcula-
tions with the precision of localized basis sets, which are better suited to describing spatially finite
systems. The MOLGW code [322], selected for the calculations of isolated systems (see Sec. 6.1)
performed in this Thesis, implements both DFT and MBPT within a Gaussian basis set framework.
The code includes the implementation of the GW approximation (Sec. 3.5.1) and the solution of
the BSE (Sec. 3.8.4) for evaluating electronic levels and optical spectra, respectively. In MOLGW,
the process begins with the calculation of the ground-state properties of the system within DFT.
Various XC functionals are implemented, including standard LDA, GGA (Sec. 2.3.4), and hybrid
functionals, such as B3LYP and HSE06 (Sec. 2.3.7). There is also the option to perform a pre-
liminary HF calculation, which can be used as a starting point for the self-consistent ground-state
calculations. The resulting output provides single-particle eigenvalues and eigenfunctions, which
are then used to construct the screening matrix and the QP Green’s function for the subsequent
steps. QP calculations can be performed at different levels of approximation, specifically, one-shot
(G0W0) or eigenvalue self-consistent GW (evGW ), as discussed in Sec. 3.6.3. Finally, after com-
puting the screening and obtaining the eigenvalues from the GW calculation and the KS (or HF)
eigenfunctions, the BSE is solved to obtain the photoabsorption spectra.

Basis Sets

In the condensed matter physics community, most DFT and MBPT codes are based on periodic
boundary conditions, with Bloch wavefunctions expanded over a PW basis sets. In contrast, within
the quantum chemistry community, the standard approach is to expand molecular orbitals (MOs),
ϕi(r), using localized basis sets such as Slater-type, Gaussian-type, or numerical atomic orbitals
[330]:
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ϕi(r) =

N∑
α=1

Cα,iGα(r) (19)

where Gα(r) are the fixed basis functions and Cαi are the coefficients determined by solving the
self-consistent calculations. In this Thesis, both the self-consistent Kohn-Sham equations of DFT
(or HF) and the MBPT equations are solved using the MOLGW code. In MOLGW, a Gaussian-
type orbital (GTO) basis is preferred over the more formally accurate Slater-type orbitals (STOs)
due to the more efficient computation of single-particle and two-particle molecular integrals. Fig. 1
illustrates the difference between a Slater orbital and a single Gaussian orbital.
A single (primitive) Gaussian function can be expressed in “pure” spherical form as (see Fig. 2 for
s, p, and d orbitals):

gv(r) = Ylm(θ, φ) rle−zv(x
2+y2+z2)

Figure 1: Comparison between Slater and Gaussian
functions. The Slater function has a cusp at the
origin and a slower decay than the Gaussian func-
tion.

Figure 2: Cartesian Gaussian functions
for describing orbitals with l = 0, 1, 2.

Since a single Gaussian cannot accurately describe a STO, it is common practice to use a lin-
ear combination of primitive Gaussian functions to better approximate a Slater function. This
combination, known as a “Contracted Gaussian” (CG), is written as:

Gα(r) =

Nα∑
v=1

= cvgv(r)

The expansion coefficients cv are fixed in the contracted Gaussians, which serve as the basis functions
introduced in Eq. (19). The simplest type of Gaussian basis sets are the minimal basis STO-
nG type. These basis sets attempt to approximate each STO by a single contracted Gaussian
composed of n primitive Gaussians. It is evident that, as the number of Gaussians increases, the
approximation of the Slater function improves. The flexibility of a basis set can be enhanced by
including one CG for each inner shell orbital and more than one CG for each valence shell orbital.
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This approach, described by Pople [331], leads to the nomenclature x-yzG, where x indicates the
number of primitive Gaussians used for each core orbital. The valence orbitals are represented
by two CGs, each consisting of a linear combination of y and z primitive Gaussians, respectively.
Valence orbitals are generally described using two, three, four, or five CGs, and are commonly
referred to as Double, Triple, Quadruple, or Quintuple Zeta. These basis sets are known as “split
valence” or “double zeta” (DZ) sets.
Further improvements to describe MOs are obtained by adding other types of CGs in the expansion
such as polarization and diffuse functions:

• “Polarization functions” offer higher basis set flexibility by helping to describe the formation
of chemical bonds in any direction within molecules.

• “Diffuse functions” having a low exponent improve the predicted properties of species with
extended electronic densities such as anions or molecules forming hydrogen bonds.

Both polarization and diffuse functions and another improvements are included in basis sets de-
veloped by Dunning [332] and which are one of the most widely used basis sets in post-HF and
post-DFT calculations. For this set the typical nomenclature is (aug)-cc-pVαZ, where:

• “cc” stands for correlation-consistent: these sets have been developed using post-HF methods
to better describe e-e repulsion beyond the average coulomb Hartree and exchange terms.

• “p” indicates the presence of successively larger shells of polarization (correlating) functions
(d, f, g, etc.).

• “V” indicates they are valence-only basis sets.

• The presence of “aug” means that the sets are augmented with further diffuse functions in
order to describe extended electronic densities.

• The αZ indicates the size (zeta) of the basis (number of CGs for each atomic orbital).

Auxiliary Basis Sets

While standard atomic orbital basis sets are used to expand one-electron functions, such as molec-
ular orbitals, auxiliary basis sets are often employed in quantum chemistry codes to efficiently
approximate products of one-electron functions, which arise in the evaluation of four-center inte-
grals. For a molecule of fixed size, increasing the number of basis functions per atom, n, leads to
an O(n4) growth in the number of significant four-center (two-electron) integrals. Consequently,
using large (high-quality) basis expansions becomes computationally expensive. The most practical
solution to this “basis set quality” bottleneck is the use of auxiliary basis expansions. The auxiliary
basis {|K⟩} is used to approximate products of Gaussian basis functions:

|µν⟩ ≈ |µ̄ν⟩ =
∑
K

|K⟩CK
µν

The use of auxiliary basis expansions is also known as resolution of the identity (RI) or density
fitting (DF). When employing auxiliary basis expansions, the rate of growth in computational cost
for large-scale electronic structure calculations with increasing n is reduced to approximately O(n3).
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Appendix C

Non-Linear Optics

The effects of an electric field E on a material can be understood in terms of the polarization P
it induces. Polarization represents the dipole moment per unit volume resulting from the charge
displacements caused by the electric field. These effects are mathematically described by a response
function or susceptibility, χ(E), which quantifies the relationship between the electric field E and the
polarization P . Although this response function generally depends on the intensity of the electric
field, it is often a good approximation to neglect this dependency,

P = χ(E)E → P = χ E (20)

where the tensorial nature of these variables is ignored for simplicity, as well as their time and space
dependencies. Eq. (20) embodies the physics of the linear regime, which captures the predominant
effects of optical excitations and successfully describes a wide variety of optical phenomena, e.g.,
absorption.
The linearity proposed in Eq. (20) can be seen as the leading term of an expansion in powers of the
electric field,

P = χ(1)E + χ(2)E2 + χ(3)E3 + O(E4) (21)

where χ(n) is the n-th order susceptibility [333] and is, in general, a tensor. The fact that higher-
order response functions are several orders of magnitude smaller than χ(1) explains why non-linear
effects only become significant at high-intensity electric fields. Such high-intensity fields became
available only after the invention of the laser in 1960, which provided a highly coherent, high-
intensity monochromatic light beam. This advancement enabled the observation of second optical
harmonics in crystalline quartz [334], marking the first non-linear optics experiment of the laser era.
This milestone ushered in a new chapter in the field of non-linear optics, which has since continued
to thrive and evolve.
Advancements in this field have led to several applications, notably non-linear optical spectro-
scopies, which have become invaluable tools for investigating material properties. This is primarily
due to second harmonic generation (SHG) and its dependence on symmetry: SHG is forbidden in
systems with inversion symmetry. Consequently, SHG has traditionally been employed to study
surfaces and interfaces [335–337], and more recently, to characterize and image two-dimensional
materials [338–341]. Additionally, SHG serves as a highly sensitive probe for magnetic ordering in
atomically thin materials [342–344] and multiferroics [345, 346]. In particular, SHG is a valuable
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tool for investigating two-dimensional antiferromagnets, especially when a phase transition breaks
inversion symmetry. This capability bridges a gap between traditional magnetometric techniques,
which require large sample volumes, and magneto-optical Kerr effect microscopies, which detect
two-dimensional magnetism only if the net magnetization is non-zero, typically applicable to fer-
romagnets [347]. Furthermore, due to its sensitivity to changes in electric polarization, SHG can
also probe the dynamics of excited systems, such as tracking exciton formation, exciton-phonon
coupling, and the demagnetization of antiferromagnets [348,349].
The non-linear optical regime is typically addressed with non-perturbative methods based on explicit
time propagation, which makes them computationally costly. We tackle this issue by proposing a
reformulation of the so-called real-time approach [201] based on Floquet theory, which leads to a
self-consistent time-independent eigenvalue problem.

Real-Time Approach

We consider the Hamiltonian of a crystalline solid coupled to a time-dependent electric field, namely

Ĥ = Ĥ0 + ĤE

where Ĥ0 is the unperturbed Hamiltonian in the absence of an external field, and ĤE represents the
perturbation due to the electric field. The Bloch eigenstates of the cell-periodic part of the unper-
turbed Hamiltonian, e−ik·rĤ0e

ik·r, are denoted as µnk(r). The wavefunctions ψnk(r) = eik·rµnk(r)
are the eigenstates of the unperturbed Hamiltonian Ĥ0. In this context, the periodic part of these
functions is referred to as the zero-field time-zero states, |µnk⟩, which will be used as the starting
point for time integration or as a basis. In practice, these time-zero states are defined at the DFT
level, i.e., ψnk(r) ≡ ϕKS

nk (r).

Equation of Motion

The real-time approach to non-linear optics discussed in this Thesis follows the methodology es-
tablished by Refs. [201, 350, 351], and is based on the scheme introduced by Souza et al. [202]
for dynamical Berry-phase polarization. In this formalism, the central elements are the time-
dependent Bloch states, |vnk⟩, which represent the periodic part of the states. These are expressed
as ψnk(r, t) = eik·rvnk(r, t). The states |vnk⟩ are obtained by time-evolving the time-zero states
|µnk⟩ according to the equation of motion (EOM),(

Ĥeff
k − i∂t

)
|vnk⟩ = 0 (22)

coupled with the boundary condition

|vnk⟩ (t = 0) = |µnk⟩

and the effective Hamiltonian

Ĥeff = Ĥ0 + Ŵ (E) (23)
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The unperturbed Hamiltonian Ĥ0 in Eq. (23) is a single-particle operator that varies depending on
the level of theory employed [350–352]. The perturbation, Ŵ (E), represents the interaction with
the external field E .
The real-time approach is then based on integrating the EOM (22) numerically, using a suitable
integration method. This process is carried out in Kohn-Sham space, resulting in several EOMs
for the projections ⟨µik|vnk⟩(t). The accuracy and stability of this numerical integration depend
on using a short time step, typically in the range of 1-10 attoseconds. This time step is material-
dependent and reflects the rate at which the dynamics of a given system evolve. Ultimately, having
access to the time-dependent Bloch states |vnk⟩ allows us to compute dynamical properties, such
as polarization as a function of time. From this, susceptibilities of any order with respect to the
electric field can be extracted.

Levels of Theory

In the real-time approach, three main levels of theory are considered for electron-electron correlation,
each manifesting in the expressions for the effective Hamiltonian in Eq. (23). We start with the
IPA level [201,350,351], i.e.

ĤIPA = ĤIPA
0 + Ŵ (E) = ĤKS[ρ0] + ∆̂QP[ρ0] + Ŵ (E) (24)

Here, ĤIPA
0 represents the corresponding unperturbed Hamiltonian. This includes the KS Hamilto-

nian, ĤKS[ρ0], which is a functional of the ground-state density ρ0, as well as the QP corrections,
∆̂QP[ρ0]. These QP corrections could be as simple as a rigid shift (scissor operator) or more complex,
involving corrections obtained from a G0W0 scheme, which formally depend on the ground-state
density matrix. In any case, ĤIPA

0 is a functional of only ground-state quantities and is therefore
time-independent. The time dependence of the effective Hamiltonian at the IPA level is thus con-
fined to the electron-field coupling operator, Ŵ (E).
The first step beyond the IPA level is to include the Hartree potential, VH[ρ], in the effective
Hamiltonian [201,350,351],

ĤTDH = ĤKS[ρ0] + ∆̂QP[ρ0] + VH[ρ] + Ŵ (E) (25)

which represents the so-called time-dependent Hartree (TDH) level. The Hartree term is simply
the classical Coulomb potential originating from the time-dependent electron density. The ground-
state Hartree potential is already taken into account at the DFT level (see Sec. 2.3) and, therefore,
included in ĤIPA

0 . As a result, the Hartree potential added at the TDH level should represent the
difference respect to the ground-state contribution. This is achieved by subtracting the ground
state density, i.e. V̂H[ρ− ρ0].
Finally, we address the inclusion of correlation effects in the real-time approach. In principle, this
could be achieved by adding a time-dependent exchange-correlation functional to Eq. (25), thus
reaching the TDDFT level. However, the currently available approximations to this functional face
limitations when attempting to describe excitons in extended systems [61], as previously discussed.
Therefore, we opt to incorporate correlation effects by adding the screened-exchange self-energy,
Σ̂SEX[ρ], into the effective Hamiltonian [201,350,351], obtaining
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ĤH+SEX = ĤKS[ρ0] + ∆̂QP[ρ0] + VH[ρ] + Σ̂SEX[ρ] + Ŵ (E) (26)

as a functional of the density matrix. This approximation is sometimes called TD-BSE. We will
refer to this as the Hartree plus screened exchange (H+SEX) level of theory6. However, H-SEX can
sometimes be computationally demanding. In such cases, additional approximations are necessary.
This will be discussed further in the next section.
The real-time approach incorporates electron-electron correlation within a non-perturbative frame-
work, enabling the description of excitonic effects in non-linear optical phenomena [201, 351]. A
key advantage of this approach is evident in Eqs. (24)-(26): the inclusion of many-body effects is
as straightforward as adding terms to the effective Hamiltonian in Eq. (22) [351]. This flexibility
stands in stark contrast to perturbative methods, where the complexity of the formulations in-
creases significantly as correlation effects are incorporated into the formalism (e.g., [353]).

Long-Range Screened Exchange (LSEX) Approximation

In real-time simulations, time-dependent electric fields are essential for computing the time evo-
lution of the polarization response. However, introducing a time-dependent electric field breaks
time-reversal symmetry. This presents a significant challenge, particularly for systems with a large
number of electrons, such as when SOC is included, and when dense k-grids are used. Most compu-
tational codes for simulating periodic systems rely on symmetries to reduce computational costs and
enhance performance, making the inclusion of time-dependent fields computationally demanding.
Additionally, as discussed in Sec. 4.2 for bilayer MoS2, a static electric field can induce a non-linear
response, further breaking additional symmetries. This adds to the complexity of simulating such
systems.
To incorporate excitonic effects into real-time dynamics, we derive a simplified screened exchange
term, which we defined as long-range screened exchange (LSEX). As a starting point, we re-
fer to the Appendix of Ref. [350]. The Kadanoff-Baym equation includes the matrix elements
⟨m,k| Σ̂SEX |m′,k⟩:

ΣSEX
mm′,k(t) = i

∑
n,n′

∑
G,G′,q

ρmn(k,q,G′)ρ∗m′n′(k,q,G)WG,G′(q) ∆γ nn′

k−q
(t) (27)

where ∆γ is the variation of the density matrix, and:

ρmn(k,q,G) =

∫
φ∗
m,k(r)φn,k−q(r)ei(G+q)·r

The LSEX approximation involves retaining only the long-range component of the screened inter-
action, i.e., W (q) = WG=0,G′=0(q). Therefore, Eq. (27) simplifies to:

ΣLSEX
mm′,k(t) = i

∑
n,n′

∑
q

ρmn(k,q)ρ∗m′n′(k,q)W (q) ∆γ nn′

k−q
(t) (28)

6Notably, the TDH and H+SEX levels of theory reduce to the RPA and the BSE, respectively, in the linear
response limit [350]
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By noting that the density matrix can be expanded as:

∆γnm,k(t) =

Nv∑
l=1

⟨um|vlk⟩⟨vlk|un⟩ − δnmf(ϵnk)

where l is an index running over valence bands, n, n′,m,m′ are indeces over all bands, and f(ϵnk)
are the occupation functions, we can rewrite Eq (28) as:

ΣLSEX
mm′,k = i

∑
l,n,n′

∑
q

ρmn(k,q)ρ∗m′n′(k,q)W (q) ⟨un′ |vlk-q⟩⟨vlk-q|un⟩ − Σeq
mm′,k (29)

where Σeq is the self-energy at equilibrium, defined as:

Σeq
mm′,eq = i

∑
n

∑
q

ρmn(k,q)ρ∗m′n′(k,q)W (q) f(ϵnk−q)

We then define the oscillators ρ between time-dependent valence bands and Kohn-Sham states as:

ρ̃ml(k,q) =
∑
n

ρmn(k,q)⟨vlk-q|un⟩

and Eq. (29) reduces to:

ΣLSEX
mm′,k = i

Nv∑
l

∑
q

ρ̃ml(k,q)W (q) ρ̃m′l(k,q) − Σeq
mm′,k (30)

To be consistent with this approximation, we excluded the LFE in the dynamics. This approach
is similar to that used in simple models, with the key difference that we explicitly calculate the
matrix elements of the Coulomb interaction between different bands at finite q.
We tested this approximation on monolayer WSe2 and bilayer MoS2, comparing the results with
available experimental measurements (see Fig. 10 of Appendix E). We found that only a few G-
vectors (see Eq. (27)) are required to reproduce the first excitons, while peaks at higher energies
demand a larger number of G-vectors. This makes the approach less appropriate, if compared
to the one in Ref. [350], for the description of the full spectrum, but very advantageous if one is
interested only in the lowest excitonic peaks.

The Berry-Phase Formulation

In extended systems, direct coupling to the electric field in the length gauge, −erE, should be
avoided because the position operator is ill-defined under periodic boundary conditions [354–356].
In the linear regime, this issue is typically circumvented using the commutation relation [Ĥ, r̂] = p̂+
[V̂NL, r̂], where V̂NL is the non-local part of the Hamiltonian. However, since the real-time approach
aims to describe non-linear optical processes, an electron-field coupling operator that remains valid
beyond the linear regime is required. This challenge is addressed through a Berry-phase formulation
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of the dynamical polarization, leading to a dipole operator expressed as a covariant k-derivative.
This formulation is incorporated into the electron-field coupling operator [202],

Ŵk(E) = ŵk(E) + ŵ†
k(E) (31)

In Eq. (31), ŵk(E) is the electron-field coupling operator in its Berry-phase formulation, as outlined
in Refs. [201] and [202].
Within this Berry-phase framework [202], the Lagrangian of the system gives rise to the EOMs
for the time-dependent Bloch states, which are central to the real-time approach described in
Eq. (22) [201, 351]. As discussed earlier, by numerically integrating Eq. (22), we can obtain the
time-dependent states |vnk⟩ at each time step ti. These states allow us to update the overlaps
[Skkσ

α
]nm =

〈
vnk
∣∣vmkσ

α

〉
, defined as

[Skkσ
α

]nm =
〈
vnk
∣∣vmkσ

α

〉
(32)

where the state
∣∣vmkσ

α

〉
is the so-called dual of the state |vnk⟩. Ultimately, the overlaps in Eq. (32)

can be used to compute the polarization using the Berry-phase formulation:

Pα = − ef

2πv

aα
N⊥

α

∑
k⊥
α

Im

ln

N∥
α−1∏
i=1

(Skikσ
α

)

 (33)

with the electron charge e, occupation factor f , unit cell volume v. Eq. (33) provides the dynamical
polarization in the direction α of the lattice vector aα. The corresponding reciprocal lattice vector

bα is used to determine the number of k-points in a string along its direction, N
∥
α, as well as the

number of k-points in a plane perpendicular to bα, namely N⊥
α .

Response Functions

In the regime where the dynamical polarization is time-periodic, with the same periodicity as the
perturbation, ω0, it can be expressed as a Fourier series:

P (t) =
∑
n

p(n)einω0t (34)

where scalar magnitudes are used for simplicity. In addition, one can consider its expansion in
orders of the electric field E (21),

P (t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + O(E4(t)) (35)

The tensor nature and time dependence of the susceptibilities χ(n) are omitted for brevity. By com-
paring Eqs. (34) and (35), we can extract susceptibilities of any order. The relationship between
the Fourier coefficients p(n) and the corresponding susceptibilities depends on both the order n and
the form of the electric field, which is typically chosen to be a sine function, (eiω0t − e−iω0t)/2i.
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This procedure highlights another significant advantage of the real-time approach. As a non-
perturbative method, it enables the simultaneous determination of susceptibilities at various orders
in the electric field. This is made possible by the use of a Berry-phase-derived electron-field coupling
operator, which remains valid at all orders of the electric field. In contrast, perturbative approaches
require distinct formulations for each order of susceptibility they aim to calculate.

Dephasing

The electronic systems examined in this Thesis are considered perfectly isolated due to the approx-
imations employed, such as the Born-Oppenheimer approximation and fixed nuclei. This means
that important dissipative effects, such as inelastic electron scattering or interactions with other
degrees of freedom like phonons or defects, are neglected. These dissipative processes represent the
interaction of electrons with their environment and contribute to the decay of excited electronic
populations, thus providing a finite lifetime for excitations. Omitting these effects results in an
incomplete representation of the dynamics of open systems.
To address this limitation, dissipative effects are included phenomenologically in the real-time ap-
proach through a dephasing term. This involves incorporating, to the EOM for |vnk⟩ (22), a
dephasing operator,

Γph = −iν (|vnk⟩ ⟨vnk| − |µnk⟩ ⟨µnk|) (36)

In Eq. (36), ν is a positive number, with the dimension of an energy, chosen to provide a desired
broadening to the spectra. In the EOMs, this operator acts as a restoring force proportional to the
departure of the state |vnk⟩ from equilibrium, |µnk⟩, thus limiting the population of empty states
upon excitation.
Another role of the dephasing term is to address the requirement that, to extract non-linear re-
sponse functions at frequency ω0, the system must be driven by a monochromatic perturbation of
the same frequency. This ensures that the resulting dynamical polarization is time-periodic with
the same period, which is essential for expanding it as a Fourier series (see Eq. (34) and extracting
the non-linear susceptibilities as described above. Only under these conditions can one ensure that,
for instance, p(2) from Eq. (34) accurately reflects χ(2) from Eq. (35). In a real-time calculation,
the system is initially perturbed by an electric field at t0, which is typically non-periodic. This
initial perturbation introduces transient excitations across all electronic transitions in the material.
To address this, the dephasing term is used to suppress these unwanted excitations, allowing the
system to settle into a regime where it is primarily driven by a monochromatic electric field with
frequency ω0 for t ≫ t0. Once this periodic state is achieved, the dynamical polarization becomes
time-periodic with the same frequency as the perturbation, and non-linear susceptibilities can be
accurately extracted. The duration of simulated time required to reach this stable periodic regime,
and thus to properly dephase the response, is a critical convergence parameter for the real-time
approach.
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Appendix D

Supplementary Material of “Tellurene Polymorph for Solar
Harvesting Applications”

Electronic Structure

The DFT band structures are shown in Fig. 3 (dashed red lines) and the information about the
band gaps are summed up in Table II. 2L α-Te is a semiconductor with an indirect gap of 0.67 eV
(Fig. 3a), while the minimum direct gap is of about 0.86 eV. 1L β-Te is a direct gap semiconductor,
with an electronic gap (located at Γ) of 1.02 eV (Fig. 3c). Similarly to 2L α-Te, 1L γ-Te is a semi-
conductor with an indirect gap of 0.42 eV, whereas the lowest direct gap (at Γ) is 0.54 eV (Fig. 3e).
For a detailed discussion of the DFT results, we refer the reader to our previous work [167].
Overall, the DFT bands dispersions are only slightly modified by the many-body e-e interaction,
and an almost rigid shift appears. The calculated QP band gaps are about 1 eV larger than the
DFT ones (see Table 4.2). In the case of the 2L α-Te allotrope, we observe a significant change in its
indirect gap, from 0.67 to 1.31 eV, when incorporating many-body effects. Additionally, the direct
gap is found to be about 1.51 eV (Fig. 3a). To the best of our knowledge, these are the first reported
many-body calculations for such a system. Regarding 1L β-Te, we find that this phase exhibits a
QP-corrected direct gap of 1.96 eV at the Γ point (Fig. 3c), which is in excellent agreement with a
previous study that also includes SOC [164]. Min et al. [165] found, through linear extrapolation,
a similar value (1.99 eV), but obtained instead an indirect gap because they neglect SOC. Finally,
1L γ-Te indirect band gap passes from 0.42 to 1.02 eV, while its lowest direct gap is of about 1.18
eV (Fig. 3e), in excellent agreement with the work of Villegas et al. [168], which also includes SOC
and Coulomb truncation. All this highlights and confirms the importance of including SOC and
the Coulomb cutoff in accurately predicting the electronic (and optical) properties of these systems.
Finally, we would like to point out that since the QP corrections change only slightly (or not at all)
the band dispersion around the VBM and the CBM, valuable information like the effective masses
values can be extracted already from the DFT band structures. This finding is particularly useful
for the subsequent discussion and analysis of the excitonic states.

Exciton Radiative Lifetime

Starting from the radiative decay rate γS of an exciton in a state S and taking into account the
in-plane anisotropy, we have estimated the exciton radiative lifetime at T = 0 K using [79,357]:
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γS(0) = τ−1
S (0) =

8πe2ES

Aucℏ2c
d2S,x + d2S,y

2
(37)

Here, ES is the energy of the exciton in state S, d2S,i is the square modulus of the BSE exciton
transition dipole in the direction i = x, y, divided by the number of unit cells in the 2D system
(i.e., the number of 2D k-points employed in the calculations), Auc is the area of the unit cell and
c the speed of light. By following Ref. [357], we have then calculated the average radiative lifetime
⟨τS⟩ at temperature T as:

⟨τS⟩ = τS(0)
3

4

(
2
√
µxµyc

2

E2
S

)
kBT (38)

where µx and µy are the exciton reduced masses in the two in-plane directions. For isotropic 2D
materials (such as γ-Te), we have that d2S,x = d2S,y = d2S and

√
µxµy = µ and we reduce to the same

case as Ref. [79]. At room temperature, we define an effective radiative lifetime ⟨τRT
eff ⟩ obtained by

further averaging the rates in Eq. 38 over the lowest-energy bright and dark excitons within kBT
from the optical onset, obtaining [79]:

⟨τeff ⟩−1 =

∑
S⟨τS⟩−1e−ES/kBT∑

S e
−ES/kBT

(39)

The calculated radiative lifetimes are reported in Table 4.2.
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Figure 3: [Left ] G0W0 (solid black lines ) and DFT (dashed red lines ) band structures, obtained
by using a norm-conserving, fully relativistic GGA-PBE pseudopotential, with SOC and semi-core
electrons, of 2L α-Te (a), 1L β-Te (c) and 1L γ-Te (e), respectively. Energy zero is set as the top
of the valence bands. [Left ] Optical absorption spectra, expressed in terms of the absorbance A(ω),
calculated at the G0W0-IQP (black lines) and BSE level (color ), with the inclusion of SOC and
semi-core electrons, of 2L α-Te (b), 1L β-Te (d) and 1L γ-Te (f), respectively. Broadening is set
to 0.01 eV.
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Figure 4: [Top ] Comparison of the optical absorption spectra, calculated at the BSE level and
expressed in terms of the absorbance A(ω), along the two in-plane directions x and y, of respectively
2L α-Te (a) and 1L β-Te (b). [Bottom ] Difference of the optical absorption spectra, calculated at
the BSE level and expressed in terms of A(ω), between the two in-plane directions, of respectively
2L α-Te (c) and 1L β-Te (d). Broadening is set to 0.01 eV.
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Figure 5: Valence (a) and conduction (b) band wavefunctions of 1L β-Te at Γ. The py-like character
of the valence band wavefunction appears manifest.

Figure 6: Optical absorption spectra comparison with MoS2 (black ), expressed in terms of the
absorbance A(ω) (left axis ), calculated at the BSE level, with the inclusion of SOC, of 2L α-
Te (blue ), 1L β-Te (red ) and 1L γ-Te (violet ), respectively. Broadening is set to 0.02 eV. The
AM1.5G solar flux Φ(ω) [169] (orange, right axis ) and the relative color spectrum (IR in dashed
light red ) are also reported, in terms of both photon energy (bottom axis ) and wavelength (top axis ).
Be aware that the optical spectra colors are arbitrary and are not related to the light spectrum ones.
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Appendix E

Supplementary Material of “Tunable Second-Harmonic Gen-
eration in 2D Materials”

Here we report computational results not included in the main discussion in Sec. 4.2.

Figure 7: Intrinsic SHG (i.e. without applied electric field) in monolayer MoS2 at the IPA level,
compared to the induced SHG in bilayer MoS2.
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Figure 8: Convergence of imaginary part of the dielectric function of bilayer MoS2, at the BSE
level, with respect to the number of occupied (a) and unoccupied (b) bands.

Figure 9: Imaginary part of the dielectric function of bilayer MoS2 at the IPA (a) and BSE (a)
level as a function of the external field.
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Figure 10: Imaginary part of the dielectric function of monolayer WSe2, calculated at the BSE level
both using HSEX and LSEX approximations (with different numbers of G-vectors). Our results are
compared with the experimental measurements of Ref. [358] (dotted curve).
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Appendix F

Supplementary Material of “Exfoliable 1D Semiconducting
Materials from High-Throughput Screening”

Dependence of the Empty States on the Cell Vacuum: the Prototypical
Case of MgN2

Figure 11: Optimized geometric structures (a) and electronic band structures (b) of MgN2. Credits
to [271] for the structures provided. The energies were rescaled with respect to the VBM. The zero
level is highlighted with a red dotted line.

In DFT calculations for periodic low-dimensional materials such as nanowires, 2D materials, and
thin films, the inclusion of a vacuum region is essential for achieving accurate results. These materi-
als are often simulated using periodic boundary conditions, which replicate the unit cell throughout
space. For low-dimensional systems, this periodic replicas can cause unintended interactions be-
tween the material and its periodic images in the non-periodic directions. By including a sufficiently
large vacuum region around the material, typically in the range of 15− 20 Å, one tries to minimize
these spurious interactions, particularly vdW forces and electrostatic interactions. The inclusion of
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vacuum is therefore a fundamental step in DFT simulations of low-dimensional materials to ensure
the physical relevance and reliability of the calculated properties.
In recent years, researchers have been developing advanced techniques within DFT to address the
limitations of the traditional approach of including large vacuum regions around low-dimensional
materials. While adding vacuum is effective in reducing interactions between periodic images, it
significantly increases the computational cost, especially for large supercells. To make these cal-
culations more efficient, efforts have been directed toward implementing Coulomb cutoff methods.
Coulomb cutoffs are designed to selectively limit the range of the Coulomb interaction in certain
directions, effectively reducing the artificial electrostatic interactions between periodic images with-
out the need for extensive vacuum regions. By truncating the Coulomb potential, these methods
ensure that the interaction decays rapidly beyond a certain distance, which allows for the use of
smaller unit cells and less vacuum. This reduction not only decreases computational resources but
also improves the accuracy of simulations by focusing on the intrinsic properties of the material
itself rather than the vacuum-induced artifacts.
In particular, in the QE community, two Coulomb cutoff techniques were implemented for both
1D [359] and 2D [360] systems. These methods have proven to be highly effective in accelerating
the convergence of ground-state properties — such as the total energy, the Fermi level, and the
phonon dispersion — without the need for excessively large vacuum regions. However they are less
effective in the calculation of the energy dispersion, particularly for empty states. This limitation
is especially pronounced in 1D systems, where achieving convergence of the band structure with
respect to the vacuum region is virtually impossible.
Here, we present the prototypical study of MgN2, which represents a particularly pathological case.
The relaxed structure and the converged DFT electronic band structure are displayed in Fig. 11.
For the DFT part, the QE integrated suite [22,23] was used. A norm-conserving, scalar-relativistic
pseudopotential from the PseudoDojo repository (v0.4) [157] was employed, using GGA-PBE XC
functional [155]. Upon convergence, kinetic energy cutoffs of 80 was chosen. A uniform Monkhorst-
Pack k-point mesh with dimension of 1 × 1 × 24 was employed. To prevent interaction between
periodic replicas, a minimum vacuum region of 16 Å along the non-periodic (xy) directions was
introduced. Structural relaxation was considered converged when the maximum component of the
residual ionic forces dropped below 10−8 Ry/Bohr. MgN2 unit cell (Fig. 11a), with a lattice pa-
rameter of 3.823 Å, is composed of a single Mg atom bonded with two N atoms with an angle
of about 38°, forming a triangle in the bonding plane. MgN2 is direct-gap semiconductor wire,
with a calculated narrow-gap of 0.26 eV at the Γ point (Fig. 5.2a). Interestingly, the extremely flat
conduction band is separated from the next empty band by an energy gap (≈ 1.2 eV at the Γ point)
that is larger than the electronic gap itself. This gap is even greater for the valence band relative to
the closest occupied band, measuring approximately 5 eV at the Z point. These substantial energy
separations suggest that interactions or mixing between these bands are minimal and that they
could be associated with different atomic orbitals or electronic configurations that are well sepa-
rated in energy. In Fig. 12 we present the band structure of MgN2, calculated with two different
vacuum regions: 16 Å (cyan) and 18 Å (blue). Even with a small increase of just 2 Å, the electronic
bands are well converged only up to few eV above the Fermi level (red dashed line). This difficulty
can be attributed to the reduced dimensionality of 1D systems. In these systems, electronic screen-
ing is significantly less effective compared to 2D or bulk materials, leading to stronger Coulomb
interactions. As a result, the electron wavefunctions become highly delocalized into the vacuum
region, making it challenging to isolate the system’s intrinsic properties. This issue significantly
hinders the calculation of excited-state properties in 1D systems. Indeed, most computational codes
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available for simulating such properties in periodic materials rely on summations over empty states
to compute key quantities like the correlation self-energy Σc. Therefore, the inability to properly
converge the band structure of 1D materials due to insufficient vacuum can lead to inaccuracies in
predicting excited-state phenomena. To bypass the issue, we employed the following strategy:

• The QP corrections to the band gap were calculated simultaneously for varying amounts of
vacuum.

• For each vacuum level, the summations over empty states were truncated at an increasing
energy threshold.

The reference for the zero energy should be chosen accordingly, preferably starting from the Fermi
level. An example of this procedure is shown in Fig. 13 for MgN2. As the vacuum increases, the
number of empty states within each energy threshold also increases, leading to a significantly higher
computational cost at each step. Our calculations indicate that a vacuum of 15–16 Å and an energy
threshold of 20 eV (from the Fermi level) are generally sufficient to converge the correction to the
band gap, resulting in a discrepancy of less than 1% compared to a vacuum of up to 30 Å. This
“recipe” allows for simultaneous control of the convergence with respect to both vacuum and empty
states in MBPT calculations, with the QP correction to the band gap serving as the convergence
parameter, bypassing the direct dependence of the results on these quantities while reducing the
computational cost.

Table 1: Parameters used in the GW and BSE calculations for MgN2.

Σx Σc Empty
bands

BSE k-points
mesh

BSE valence
bands

BSE conduction
bands

212878 G-vecs 20 Ry 1990 1× 1× 48 4 10

Hereafter, we discuss the results of the many-body calculations carried on for MgN2 following
the procedure described. MBPT calculations were carried out, using the YAMBO code [48, 49],
specifically using the G0W0 and eigenvalue self-consistent GW (evGW ) methods for QP corrections
and the BSE [158–161] for e-h interaction. The converged parameters used are reported in Table 1.
Our findings show that in MgN2, the gap increases from 4.76 (G0W0) to 5.59 eV (evGW ), thus with
a final correction of nearly 5.2 eV. Interestingly, the energy gap separating the conduction band from
the higher empty states in DFT is now completely closed, leading to a swap between the first and
second empty bands. The absorption spectrum, calculated at the BSE level using evGW -corrected
QP states, is presented in Fig. 14b. For comparison, the spectrum derived from G0W0-corrected
states is shown in Fig. 14a. Overall, the effect of self-consistency leads to a blueshift, without
altering the underlying transitions. Thus, for the sake of brevity, we focus our discussion on the
evGW+BSE spectrum. This consists of a series of transitions that are relatively well-separated
in energy, very close to what one might expect from an isolated system. Similar to such systems,
the lowest energy excitation, located in the near UV range, exhibits a significant binding energy
(around 2 eV), indicating the highly localized nature of the corresponding excitonic wavefunction.
This is confirmed by the plot of the excitonic wavefunction displayed in Fig. 15, which represents
the first bright exciton.
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Figure 12: Calculated band structure, at the DFT level, of the MgN2 wire using a vacuum of 16 Å
(cyan) and 18 Å (blue) in the non-periodic directions. The electronic bands are well converged only
up to few eV above the Fermi level (red dashed line). Energies are rescaled with respect to the VBM.

Figure 13: Convergence of the G0W0-correct band gap of MgN2 with respect to the energy threshold
for empty bands included the summations. The different curves represent the different vacuum used
in the calculations. A vacuum of 15–16 Å and an energy threshold of 20 eV (from the Fermi level)
are generally sufficient to converge the correction to the band gap, resulting in a discrepancy of less
than 1% compared to a vacuum of up to 30 Å.
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Figure 14: Absorption spectra (solid black) of MgN2, calculated at the G0W0+BSE (a) and the
eVGW+BSE level (b), expressed in terms of percentage of the optical absorbance A(ω). The corre-
sponding QP-corrected direct electronic band gaps (dashed red) are shown as a reference. A binding
energy of 1.63 and 1.89 eV were found in the G0W0+BSE and eVGW+BSE, respectively. A broad-
ening of 50 meV was used.

Figure 15: Excitonic wavefunction plots in direct space for MgN2, calculated using the YAMBO code.
The position of the hole was chosen based on the localization of the valence electrons contributing
to the exciton. The number of cell repetitions in the periodic direction was increased until the
wavefunction decayed to zero.
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This is localized on the N atoms and extends across four unit cells in the periodic direction, as well
as in the non-periodic y direction. This exciton appears at 3.70 eV, approximately 1.89 eV below
the material’s direct electronic band gap (5.59 eV), which corresponds to its binding energy. The
transitions contributing to this peak involve the valence band and the fourth conduction band near
the Γ point. Interestingly, all excitations involving transitions between the valence band and the
conduction band — starting with the first at 0.78 eV — are dark, meaning no optical absorption
occurs around the band gap energy.
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gap of zno: Effects of plasmon-pole models. Physical Review B—Condensed Matter and
Materials Physics, 84(24):241201, 2011.
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