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Appendix C. Systems of Units in Nonlinear Optics

There are several different systems of units that are commonly used in nonlin-
ear optics. In this appendix we describe these different systems and show how
to convert among them. For simplicity we restrict the discussion to a medium
with instantaneous response so that the nonlinear susceptibilities can be taken
to be dispersionless. Clearly the rules derived here for conversion among the
systems of units are the same for a dispersive medium.

In the gaussian system of units, the polarization P̃ (t) is related to the field
strength Ẽ(t) by the equation

P̃ (t) = χ (1)Ẽ(t) + χ (2)Ẽ2(t) + χ (3)Ẽ3(t) + · · · . (C.1)

In the gaussian system, all of the fields Ẽ, P̃ , D̃, B̃ , H̃ , and M̃ have the same
units; in particular, the units of P̃ and Ẽ are given by

�
P̃

� = �
Ẽ

� = statvolt

cm
= statcoulomb

cm2
=

�
erg

cm3

�1/2

. (C.2)

Consequently, we see from Eq. (C.1) that the dimensions of the susceptibili-
ties are as follows:

χ (1) is dimensionless, (C.3a)
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. (C.3c)

The units of the nonlinear susceptibilities are often not stated explicitly in the
gaussian system of units; one rather simply states that the value is given in
electrostatic units (esu).

While there are various conventions in use regarding the units of the sus-
ceptibilities in the SI system, by far the most common convention is to replace
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Eq. (C.1) by

P̃ (t) = �0
�
χ (1)Ẽ(t) + χ (2)Ẽ2(t) + χ (3)Ẽ3(t) + · · · �, (C.4)

where

�0 = 8.85 × 10−12 F/m (C.5)

denotes the permittivity of free space. Since the units of P̃ and Ẽ in the MKS
system are

�
P̃

� = C

m2
, (C.6a)

�
Ẽ

� = V

m
, (C.6b)

and since 1 farad is equal to 1 coulomb per volt, it follows that the units of the
susceptibilities are as follows:

χ (1) is dimensionless, (C.7a)

�
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� =
�

1

Ẽ

�
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V
, (C.7b)
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�
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. (C.7c)

C.1. Conversion between the Systems

In order to facilitate conversion between the two systems just introduced, we
express the two defining relations (C.1) and (C.4) in the following forms:

P̃ (t) = χ (1)Ẽ(t)

�
1 + χ (2)Ẽ(t)

χ (1)
+ χ (3)Ẽ2(t)

χ (1)
+ · · ·

�
(gaussian), (C.1�)

P̃ (t) = �0χ
(1)Ẽ(t)

�
1 + χ (2)Ẽ(t)

χ (1)
+ χ (3)Ẽ2(t)

χ (1)
+ · · ·

�
(MKS). (C.4�)

The power series shown in square brackets must be identical in each of these
equations. However, the values of Ẽ, χ (1), χ (2), and χ (3) are different in
different systems. In particular, from Eqs. (C.2) and (C.5) and the fact that
1 statvolt = 300 V, we find that

Ẽ (MKS) = 3 × 104Ẽ (gaussian). (C.8)

To determine how the linear susceptibilities in the gaussian and MKS systems
are related, we make use of the fact that for a linear medium the displacement
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is given in the gaussian system by

D̃ = Ẽ + 4π P̃ = Ẽ
�
1 + 4πχ (1)

�
, (C.9a)

and in the MKS system by

D̃ = �0Ẽ + P̃ = �0Ẽ
�
1 + χ (1)

�
. (C.9b)

We thus find that

χ (1) (MKS) = 4πχ (1) (gaussian). (C.10)

Using Eqs. (C.8) and (C.9a)–(C.9b), and requiring that the power series of
Eqs. (C.1�) and (C.4�) be identical, we find that the nonlinear susceptibilities
in our two systems of unit are related by

χ (2) (MKS) = 4π

3 × 104
χ (2) (gaussian)

= 4.189 × 10−4χ (2) (gaussian), (C.11)

χ (3) (MKS) = 4π

(3 × 104)2
χ (3) (gaussian)

= 1.40 × 10−8χ (3) (gaussian). (C.12)

Appendix D. Relationship between Intensity and Field Strength

In the gaussian system of units, the intensity associated with the field

Ẽ(t) = Ee−iωt + c.c. (D.1)

is

I = nc

2π
|E|2, (D.2)

where n is the refractive index, c = 3 × 1010 cm/sec is the speed of light in
vacuum, I is measured in erg/cm2 sec, and E is measured in statvolts/cm.

In the MKS system, the intensity of the field described by Eq. (D.1) is given
by

I = 2n
� �0

μ0

�1/2|E|2 = 2n

Z0
|E|2 = 2n�0c|E|2, (D.3)

where �0 = 8.85 × 10−12 F/m, μ0 = 4π × 10−7 H/m, and Z0 = 377 
. I is
measured in W/m2, and E is measured in V/m. Using these relations we can
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TABLE D.1 Relation between field strength and intensity

Conventional Gaussian (cgs) SI (mks)

I I E I E

(erg/cm2 sec) (statvolt/cm) (W/m2) (V/m)
1 kW/m2 106 0.0145 103 4.34×102

1 W/cm2 107 0.0458 104 1.37×103

1 MW/m2 109 0.458 106 1.37×104

1 kW/cm2 1010 1.45 107 4.34×104

1 GW/m2 1012 1.45 × 10 109 4.34×105

1 MW/cm2 1013 45.8 1010 1.37×106

1 TW/m2 1015 4.58×102 1012 1.37×107

1 GM/cm2 1016 1.45×103 1013 4.34×107

1 ZW/m2 1018 1.45×104 1015 4.34×108

1 TW/cm2 1019 4.85×104 1016 1.37×109

obtain the results shown in Table D.1. As a numerical example, a pulsed laser
of modest energy might produce a pulse energy or Q = 1 mJ with a pulse
duration of T = 10 nsec. The peak laser power would then be of the order of
P = Q/T = 100 kW. If this beam is focused to a spot size of w0 = 100 µm,
the pulse intensity will be I = P/πw2

0 � 0.3 GW/cm2.

Appendix E. Physical Constants

TABLE E.1 Physical constants in the cgs and SI systems

Constant Symbol Value Gaussian (cgs) a SI (mks) a

Speed of light in vacuum c 2.998 1010 cm/sec 108 m/sec
Elementary charge e 4.803 10−10 esu

1.602 10−19 C
Avogadro number NA 6.023 1023 mol 1023 mol
Electron rest mass m = me 9.109 10−28 g 10−31 kg
Proton rest mass mp 1.673 10−24 g 10−27 kg
Planck constant h 6.626 10−27 erg sec 10−34 J sec

h = h/2π 1.054 10−27 erg sec 10−34 J sec
Fine structure constant b α = e2/ hc 1/137 – –
Compton wavelength of

electron λC = h/mc 2.426 10−10 cm 10−12 m
Rydberg constant R∞ = me4/2 h2 1.09737 105 cm−1 107 m−1

Bohr radius a0 =h2/me2 5.292 10−9 cm 10−11 m
Electron radius b re = e2/mc2 2.818 10−13 cm 10−15 m
Bohr magneton b μS = eh/2mec 9.273 10−21 erg/G 10−24 J/T

⇒ 1.4 MHz/G

(continued on next page)


