GW Common Approximation
Atambo, Michael
The Technical University: RASESMA 2023
February 16, 2023
Newton Solombian COTP GW Common Approximations

Atambo, Michael

The Technical University: RASESMA 2023

February 16, 2023

Outline

² The Quasi-Particle Equation

³ [Implem](#page-3-0)[enta](#page-4-0)[t](#page-14-0)[i](#page-15-0)[o](#page-17-0)n

⁴ [Plasmon](#page-2-0) [P](#page-2-0)ole Approximation,

Kロト K団 K K ミト K ミト / ミー のQ C

The Dyson Equation

In general the scattering path for an interacting G is given by

 $G = G_0 + G_0 \Sigma G_0 + G_0 \Sigma G_0 \Sigma G_0 + \ldots$

Or, more compactly,

 $G = G_0 + G_0 \Sigma G$

 $\begin{aligned} \text{ttering path for an interacting } G \text{ is give} \ \mathcal{G} &= \mathcal{G}_0 + \mathcal{G}_0 \Sigma \mathcal{G}_0 + \mathcal{G}_0 \Sigma \mathcal{G}_0 \Sigma \mathcal{G}_0 + \ldots \ \text{tly}, \ \mathcal{G} &= \mathcal{G}_0 + \mathcal{G}_0 \Sigma \mathcal{G} \ \text{in shows the relationship between the in-
on-interacting } \mathcal{G}_0 \ \text{simated from} \ \text{D} \text{A implementations} \end{aligned}$ • [This](#page-3-0) [equa](#page-4-0)[t](#page-14-0)[i](#page-16-0)[o](#page-17-0)n shows the relationship between the interacting system G and the non-interacting G_0

 G_0 , can be approximated from

o DFT

 \bullet HF \ldots

In typical GW@LDA implementations

- The Dyson equation is not solved in this formulation.
- Its written in a different form.

 \bullet

 \circ

$$
[-\frac{1}{2}\nabla^2 + V_H + V_{ext}]\Psi_i(\mathbf{x}) + \int \Sigma(\mathbf{x}, \mathbf{x}'; E_i)\Psi_i(\mathbf{x}')d\mathbf{x}' = E_i\Psi_i(\mathbf{x})
$$

is is a single-particle equation of motion, known as the quasiparticle
ation
s looks very familiar to KS-DFT,
however a non-linear differential equation,

The Self-Energy and The Dyson Equation The Quasi-Particle Equation Implementation Plasmon Pole Approximation, GW

0000000000000

 \circ

[This is a](#page-3-0) [single](#page-4-0)[-](#page-15-0)[p](#page-17-0)article equation of motion, known as the quasiparticle equation

This looks very familiar to KS-DFT, I

Its however a non-linear differential equation,

00000

The Self-Energy and The Dyson Equation The Quasi-Particle Equation Implementation Plasmon Pole Approximation, GW

 \bullet 0000000000000

 \bigcap

$$
[-\frac{1}{2}\nabla^2 + V_H + V_{ext}]\Psi_i(\mathbf{x}) + \int \Sigma^{GW}(\mathbf{x}, \mathbf{x}'; E_i)\Psi_i(\mathbf{x}')
$$
 $d\mathbf{x}' = \frac{E_i^{GW}}{E_i^{KS}}\Psi_i(\mathbf{x})$
\n
$$
[-\frac{1}{2}\nabla^2 + V_H + V_{ext}]\Psi_i(\mathbf{x}) + \frac{V_{xc}\Psi_i}{\Delta^2}\Psi_i(\mathbf{x})
$$
\n• Laid out this way, the parallels between the Quasiparticle equation and the KS equation is clear.
\n• These are true excitation energies\n• Excitation energies of fictitious states,
\nThis similarity makes it a small step to use perturbation theory.
\n
$$
E_i^{GW} = \epsilon_i^{KS} + \langle \psi_i | \Sigma^{GW}(E_i^{GW}) - V_{xc} | \psi_i \rangle
$$

- Laid out this way, the parallels between the Quasiparticle equation and the KS equation is clear.
- • [Thes](#page-3-0)[e](#page-4-0) [are](#page-4-0) [t](#page-15-0)[r](#page-17-0)ue excitation energies

 \circ

 \circ

• Excitation energies of fictitious states,

This similarity makes it a small step to use perturbation theory.

$$
E_i^{GW} = \epsilon_i^{KS} + \langle \psi_i | \Sigma^{GW} (E_i^{GW}) - V_{xc} | \psi_i \rangle
$$

or as commonly implemented, the linearized solution

$$
E_i^{GW} = \epsilon_i^{KS} + Z_i \langle \psi_i | \Sigma^{GW} (E_i^{KS}) - V_{xc} | \psi_i \rangle
$$

00000

$$
Z_i = (1 - \langle \psi_i | \Sigma_i^{GW}(E_i^{KS}) | \psi_i \rangle)^{-1}
$$

Z: the renomalization factor.

 $Z_i = (1 - \langle \psi_i | \Sigma_i^{GW}(E_i^{KS}) | \psi_i \rangle)^{-1}$
tion factor.
ne proportion of the spectral weight und
peak.
Energy
mposed into:
ge term
elation terms:
 $\psi = iG_0W = iG_0\nu + iG_0(W - \nu) = \Sigma^* - \nu$ This gives the proportion of the spectral weight under the quasiparticle peak.

[Back to T](#page-3-0)[he S](#page-4-0)[e](#page-15-0)[l](#page-16-0)[f](#page-17-0) Energy

- Can be decomposed into:
- The exchange term
- and the correlation terms:

$$
\Sigma^{GW}(\omega) = iG_0W = iG_0\nu + iG_0(W - \nu) = \Sigma^{x} - \Sigma^{c}(\omega)
$$

The exchange self-energy: Σ^x

$$
\Sigma^{\scriptscriptstyle{X}}({\bf r_1},{\bf r_2},\omega)=\frac{i\hbar}{2\pi}\int G_0({\bf r_1},{\bf r_2},\omega+\omega')\nu({\bf r_1},{\bf r_2})e^{i\omega'\nu}d\omega'
$$

[t](#page-2-0)[his the F](#page-3-0)[ock t](#page-4-0)[e](#page-15-0)[rm](#page-17-0) from HF self-energy, and can be rewritten:

The exchange self-energy:
$$
\Sigma^x
$$

\n
$$
\Sigma^x(\mathbf{r}_1, \mathbf{r}_2, \omega) = \frac{i\hbar}{2\pi} \int G_0(\mathbf{r}_1, \mathbf{r}_2, \omega + \omega') \nu(\mathbf{r}_1, \mathbf{r}_2) e^{i\omega' \nu} d\omega'
$$
\nthis the Fock term from HF self-energy, and can be rewritten:
\n
$$
\Sigma^x(\mathbf{r}_1, \mathbf{r}_2) = \langle \psi_i | \Sigma^x | \psi_i \rangle = -\frac{e^2}{4\pi \varepsilon_0} \sum_j^{\text{occ}} \int \psi_i^*(\mathbf{r}_1) \psi_j(\mathbf{r}_2) \psi_j^*(\mathbf{r}_2) \psi_i(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2
$$
\nthis can be integrated analytically.

this can be integrated analytically.

and the correlation self-energy: Σ^c

$$
\Sigma^c(\mathbf{r_1},\mathbf{r_2},\omega)=\frac{i\hbar}{2\pi}\int G_0(\mathbf{r_1},\mathbf{r_2},\omega+\omega')[W(\mathbf{r_1},\mathbf{r_2},\omega')-\nu(\mathbf{r_1},\mathbf{r_2})]e^{i\omega'\nu}d\omega'
$$

Can be re-written as:

and the correlation self-energy: Σ^c
\n
$$
\Sigma^{c}(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega) = \frac{i\hbar}{2\pi} \int G_{0}(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega + \omega') [W(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega') - \nu(\mathbf{r}_{1}, \mathbf{r}_{2})] e^{i\omega' \nu} d\omega'
$$
\nCan be re-written as:
\n
$$
\Sigma^{c}(\mathbf{r}_{1}, \mathbf{r}_{2}) = \langle \psi_{i} | \Sigma^{c} | \psi_{i} \rangle = -\frac{e^{2}}{4\pi \varepsilon_{0}} \sum_{j}^{occ} \int \psi_{i}^{*}(\mathbf{r}_{1}) \psi_{j}(\mathbf{r}_{2}) \psi_{j}^{*}(\mathbf{r}_{2}) \psi_{i}(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2}
$$
\nthis can only be computed numerically, this is quite expensive to do.

this can only be computed numerically, this is quite expensive to do.

 OQC

Lets rewrite both in the plane wave representation:

the exchange part,

$$
\Sigma_{nk}^{\times}==-\sum_{n_{1}}\int_{BZ}\frac{d\mathbf{q}}{(2\pi)^{3}}\sum_{\mathbf{G}}\frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}|\rho_{nm}(\mathbf{k},\mathbf{q},\mathbf{G})|^{2}f_{\mathbf{n}_{1}\mathbf{k}_{1}},
$$

where,
$$
\rho_{nm}(\mathbf{k}, \mathbf{q}, \mathbf{G}) = \langle n\mathbf{k}|e^{i(\mathbf{q} + \mathbf{G} \cdot \mathbf{r})}|\mathbf{n}_1\mathbf{k}_1 \rangle
$$
,

[a](#page-2-0)[nd the c](#page-3-0)[orrela](#page-4-0)[t](#page-15-0)[i](#page-16-0)[o](#page-17-0)n part:

$$
\begin{aligned}\n\text{whinge part,} \\
\text{exchange part,} \\
\text{=&}< n\mathbf{k}|\Sigma^{\times}(\mathbf{r}_{1},\mathbf{r}_{2})|n\mathbf{k}>=-\sum_{n_{1}}\int_{BZ}\frac{d\mathbf{q}}{(2\pi)^{3}}\sum_{\mathbf{G}}\frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}|\rho_{nm}(\mathbf{k},\mathbf{q},\mathbf{G}) \\
\text{e, } & \rho_{nm}(\mathbf{k},\mathbf{q},\mathbf{G})=< n\mathbf{k}|e^{i(\mathbf{q}+\mathbf{G}\cdot\mathbf{r})}|\mathbf{n}_{1}\mathbf{k}_{1}>, \\
\text{the correlation part:} \\
\sum_{n_{k}}^{c}(\omega) &=< n\mathbf{k}|\Sigma^{c}(\mathbf{r}_{1},\mathbf{r}_{2};\omega)|n\mathbf{k}>\n\\
&= \sum_{n_{1}}\int_{BZ}\frac{d\mathbf{q}}{(2\pi)^{3}}\sum_{\mathbf{G},\mathbf{G}'}\frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}\rho_{nn_{1}}(\mathbf{k},\mathbf{q},\mathbf{G})\rho_{nn_{1}}^{*}(\mathbf{k},\mathbf{q},\mathbf{G}') \\
&\times\int d\omega' G_{mk-q}^{0}(\omega-\omega')\epsilon_{\mathbf{G}G'}^{-1}(\mathbf{q},\omega')\n\end{aligned}
$$

 PQQ

 \circ

00000

There are a few things going on here,

An integral over the Brillouin Zone,

$$
\Sigma_{nk}^{\times}==-\sum_{n_{1}}\int_{BZ}\frac{d\mathbf{q}}{(2\pi)^{3}}\,\sum_{\mathbf{G}}\frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}|\rho_{nm}(\mathbf{k},\mathbf{q},\mathbf{G})|^{2}f_{n_{1}\mathbf{k}_{1}},
$$

An integral over the Brillouin Zone,

integral over the Brillouin Zone,
\n
$$
= < n\mathbf{k}|\Sigma^{\times}(\mathbf{r}_{1},\mathbf{r}_{2})|n\mathbf{k} > = -\sum_{n_{1}}\int_{BZ}\frac{d\mathbf{q}}{(2\pi)^{3}}\sum_{\mathbf{G}}\frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}|\rho_{nm}(\mathbf{k},\mathbf{q},\mathbf{d})
$$
\nintegral over the Brillouin Zone,
\n
$$
\Sigma_{nk}^{c}(\omega) = < n\mathbf{k}|\Sigma^{c}(\mathbf{r}_{1},\mathbf{r}_{2};\omega)|n\mathbf{k} >
$$
\n
$$
= \sum_{n_{1}}\int_{BZ}\frac{d\mathbf{q}}{(2\pi)^{3}}\sum_{\mathbf{G},\mathbf{G}'}\frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}\rho_{nn_{1}}(\mathbf{k},\mathbf{q},\mathbf{G})\rho_{nn_{1}}^{*}(\mathbf{k},\mathbf{q},\mathbf{G}')
$$
\n
$$
\times \int d\omega'G_{mk-q}^{0}(\omega-\omega')\epsilon_{GG}^{-1}(\mathbf{q},\omega')
$$

 \circ

00000

There are a few things going on here,

A Sum over occupied States:

$$
\Sigma_{nk}^{\times}==-\sum_{n_{1}}\int_{BZ}\frac{d\mathbf{q}}{(2\pi)^{3}}\sum_{\mathbf{G}}\frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}|\rho_{nm}(\mathbf{k},\mathbf{q},\mathbf{G})|^{2}f_{n_{1}\mathbf{k}_{1}},
$$

A Sum over unoccupied States:

For example, we are a few things going on here,

\n
$$
\begin{aligned}\n&=< n\mathbf{k}|\Sigma^{\times}(\mathbf{r}_{1},\mathbf{r}_{2})|n\mathbf{k}>=\frac{}{}\sum_{n_{1}}\int_{BZ}\frac{d\mathbf{q}}{(2\pi)^{3}}\sum_{\mathbf{G}}\frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}|\rho_{nm}(\mathbf{k},\mathbf{q})|n\mathbf{k}|\n\end{aligned}
$$
\nand we can be done by the following equations:

\n
$$
\begin{aligned}\n\sum_{n_{1}}^{c}(\omega) &=< n\mathbf{k}|\Sigma^{c}(\mathbf{r}_{1},\mathbf{r}_{2};\omega)|n\mathbf{k}>\n\end{aligned}
$$
\n
$$
=\sum_{n_{1}}\int_{BZ}\frac{d\mathbf{q}}{(2\pi)^{3}}\sum_{\mathbf{G},\mathbf{G}'}\frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}\rho_{nn_{1}}(\mathbf{k},\mathbf{q},\mathbf{G})\rho_{nn_{1}}^{*}(\mathbf{k},\mathbf{q},\mathbf{G'})
$$
\n
$$
\times\int d\omega' G_{mk-q}^{0}(\omega-\omega')\epsilon_{\mathbf{G}G'}^{-1}(\mathbf{q},\omega')
$$

メロメメ団 メメミメメミメン 毛 OQ

There are a few things going on here,

$$
\Sigma_{nk}^{\sf x}=<\textit{nk}|\Sigma^{\sf x}({\bf r_1},{\bf r_2})|\textit{nk}>=-\sum_{\eta_1}\int_{BZ}\frac{d{\bf q}}{(2\pi)^3}\sum_{\bf G}\frac{4\pi}{|{\bf q}+{\bf G}|^2}|\rho_{\textit{nm}}({\bf k},{\bf q},{\bf G})|^2f_{{\bf n_1}{\bf k_1}},
$$

The energy integral,

e are a few things going on here,
\n
$$
= \langle n\mathbf{k} | \Sigma^{\times}(\mathbf{r}_{1}, \mathbf{r}_{2}) | n\mathbf{k} \rangle = -\sum_{n_{1}} \int_{BZ} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G}} \frac{4\pi}{|\mathbf{q} + \mathbf{G}|^{2}} |\rho_{nm}(\mathbf{k}, \mathbf{q})
$$
\nenergy integral,
\n
$$
\Sigma_{nk}^{c}(\omega) = \langle n\mathbf{k} | \Sigma^{c}(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega) | n\mathbf{k} \rangle
$$
\n
$$
= \sum_{n_{1}} \int_{BZ} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G}, \mathbf{G}'} \frac{4\pi}{|\mathbf{q} + \mathbf{G}|^{2}} \rho_{nn_{1}}(\mathbf{k}, \mathbf{q}, \mathbf{G}) \rho_{nn_{1}}^{*}(\mathbf{k}, \mathbf{q}, \mathbf{G'})
$$
\n
$$
\times \int d\omega' G_{mk-\mathbf{q}}^{0}(\omega - \omega') \epsilon_{\mathbf{G}G'}^{-1}(\mathbf{q}, \omega')
$$

There are a few things going on here,

hings going on here,
mpute all three quantities
ge part
ion
ntegral, Yambo has to compute all three quantities

- **o** The Exchange part
- **•** The correlation
- • [the e](#page-3-0)[nerg](#page-4-0)[y](#page-13-0) [in](#page-17-0)tegral,
- How?

There are a few things going on here,

hings going on here,
mpute all three quantities
ge part
ion
ntegral Yambo has to compute all three quantities

- The Exchange part
- The correlation
- • [the e](#page-3-0)[nerg](#page-4-0)[y](#page-13-0) [in](#page-17-0)tegral
- How?

Lets look at that again

The energy integral,

look at that again
\nenergy integral,
\n
$$
\Sigma_{nk}^{c}(\omega) = \langle nk | \Sigma^{c}(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega) | nk \rangle
$$
\n
$$
= \sum_{n_{1}} \int_{BZ} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G}, \mathbf{G}'} \frac{4\pi}{|\mathbf{q} + \mathbf{G}|^{2}} \rho_{nn_{1}}(\mathbf{k}, \mathbf{q}, \mathbf{G}) \rho_{nn_{1}}^{*}(\mathbf{k}, \mathbf{q}, \mathbf{G'})
$$
\n
$$
\times \int d\omega' G_{mk-\mathbf{q}}^{0}(\omega - \omega') \epsilon_{\mathbf{G}'}^{-1}(\mathbf{q}, \omega')
$$

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ │ 콜│ ◆ 9 Q @

The energy integral can be computed once the inverse dielectric function is known. ϵ follows from the reducible response function χ ,

$$
\epsilon^{-1}_{\textbf{GG}'}(\textbf{q},\omega)=\delta\textbf{GG}'+\frac{4\pi}{|\textbf{q}+\textbf{G}|^2}\chi_{\textbf{GG}'}(\textbf{q},\omega)
$$

 χ is computed within the RPA, for the GW approximation,

$$
\chi_{\text{GG}'}(\textbf{q},\omega)=[\delta\textbf{GG}'-\frac{4\pi}{|\textbf{q}+\textbf{G}|^2}\chi^0_{\textbf{GG}''}(\textbf{q},\omega)]^{-1}\chi^0_{\textbf{G}''\textbf{G}'}(\textbf{q},\omega).
$$

[a](#page-2-0)[nd](#page-3-0) [the](#page-3-0) n[o](#page-4-0)[n](#page-11-0)[-](#page-8-0)[i](#page-10-0)n[t](#page-14-0)[e](#page-16-0)[r](#page-17-0)acting response function $\chi^0_{\mathbf{GG}''}$, can be computed from $G₀$,

e energy integral can be computed once the inverse dielectric function
\nnown.
$$
\epsilon
$$
 follows from the reducible response function χ ,
\n
$$
\epsilon_{GG'}^{-1}(\mathbf{q}, \omega) = \delta \mathbf{G} \mathbf{G}' + \frac{4\pi}{|\mathbf{q} + \mathbf{G}|^2} \chi_{GG'}(\mathbf{q}, \omega)
$$
\nis computed within the RPA, for the GW approximation,
\n
$$
\chi_{GG'}(\mathbf{q}, \omega) = [\delta \mathbf{G} \mathbf{G}' - \frac{4\pi}{|\mathbf{q} + \mathbf{G}|^2} \chi_{GG'}^0(\mathbf{q}, \omega)]^{-1} \chi_{G'/G'}^0(\mathbf{q}, \omega).
$$
\nIt he non-interacting response function $\chi_{GG''}^0$, can be computed for
\n
$$
\chi_{G'/G'}^0(\mathbf{q}, \omega) = 2 \sum_{nn'} \int_{BZ} \frac{d\mathbf{k}}{(\pi)^3} \rho_{n'nk}^*(\mathbf{q}, \mathbf{G}) \rho_{n'nk}(\mathbf{q}, \mathbf{G}') f_{nk-q} (1 - f_{n'k})
$$
\n
$$
\times \left[\frac{1}{\omega + \epsilon_{nk-q} - \epsilon_{n'k} + i0^+} - \frac{1}{\omega + \epsilon_{n'k} - \epsilon_{nk-q} - i0^+} \right]
$$

◆ロ ▶ → 伊 ▶ → 唐 ▶ → 唐 ▶ → 唐

Lets take a look at that energy integral,

$$
\int d\omega' G^0_{m\mathbf{k}-\mathbf{q}}(\omega-\omega')\epsilon^{-1}_{\mathbf{GG'}}(\mathbf{q},\omega')
$$

- A numerical integration of this would require the inversion of ϵ for many frequency points.
- This is something that's expensive,
- [So](#page-3-0) [w](#page-3-0)[e](#page-4-0)[typ](#page-4-0)[i](#page-14-0)[c](#page-16-0)[a](#page-17-0)lly use the Plasmon Pole Approximation,

In the PPA, ϵ^{-1} is approximated by a single pole function,

We a look at that energy integral,
\n
$$
\int d\omega' G_{m\mathbf{k} - \mathbf{q}}^0 (\omega - \omega') \epsilon_{\mathbf{G}\mathbf{G}'}^{-1} (\mathbf{q}, \omega')
$$
\nnumerical integration of this would require the inversion on
\nany frequency points.
\nis is something that's expensive,
\nwe typically use the Plasmon Pole Approximation,
\n PPA , ϵ^{-1} is approximated by a single pole function,
\n $\epsilon^{-1} \mathbf{GG'}(\mathbf{q}, \omega) \approx \delta_{\mathbf{GG'}} + R_{\mathbf{GG'}}(\mathbf{q}) \left[(\omega - \Omega_{\mathbf{GG'}}(\mathbf{q}) + i0^+)^{-1} \right]$
\n $(\omega + \Omega_{\mathbf{GG'}}(\mathbf{q}) - i0^+)^{-1}$.

the residuals $R_{GG'}$ and energies $\Omega_{GG'}$, are found in turn by imposing a condition that the PPA reproduces the exact ϵ^{-1} function at two frequencies $\omega = 0$ and a user defined value, $\omega = iE_{PPA}$

finally, back to the begining, and ready to calculate:

We can now take the Taylor expansion of the SE about the KS energy,

to the beginning, and ready to calculate:
\n
$$
\mu
$$
 take the Taylor expansion of the SE about the K
\n
$$
G_i(\omega) \approx Z_i \left[\frac{f_i}{\omega - E_i^{GW} + i0^+} + \frac{1 - f_i}{\omega - E_i^{GW} + i0^+} \right]
$$
\n
$$
E_i^{GW} = \epsilon_i^{KS} + Z_i \left\langle \psi_i | \Sigma^{GW} (E_i^{KS}) - V_{xc} | \psi_i \right\rangle
$$
\n
$$
Z_i = (1 - \left\langle \psi_i | \Sigma_i^{GW} (E_i^{KS}) | \psi_i \right\rangle)^{-1}
$$
\nso work, what do we get?

with:

$$
E_i^{GW} = \epsilon_i^{KS} + Z_i \langle \psi_i | \Sigma^{GW} (E_i^{KS}) - V_{xc} | \psi_i \rangle
$$

and

$$
Z_i = (1 - \langle \psi_i | \Sigma_i^{GW}(E_i^{KS}) | \psi_i \rangle)^{-1}
$$

メロトメ団 トメミトメミト 三重

 Ω

After all this work, what do we get?

The results, (van Schilfgaarde, 2008)

- This is a good description for one 1-particle G.
- We get back accurate quasiparticle energies, corrected band gaps, lifetime broadening, plasma satellites etc.

G_0 W_0 results are quite acceptable, any issues?

Convergence needs to be perfomed with caution, the typical case is ZnO, (Phys. Rev. B 84, 039906)

False convergence w.r.t. bands

- G. Onida, L. Reining and A. Rubio, Rev. Mod. Phys. 2002
- **•** Introduction to Many Body Physics, Piers Coleman,
- Interacting Electrons, David Ceperly, R. Martin, L. Reining.
- Hybertsen and Louie Phys Rev B, 1986.

Thanks

- Aryasetiawan and O Gunnarsson 1998 Rep. Prog. Phys
- [C. A](#page-3-0)[ttacc](#page-4-0)[a](#page-13-0)[l](#page-16-0)[it](#page-17-0)e, M. Grüning, and A. Marini Phys. Rev. B 84 2011.
- E. Perfetto, D. Sangalli, A. Marini, and G. Stefanucci Phys. Rev. B 94, 2016.
- Reining and A. Rubio, Rev. Mod. Physto Many Body Physics, Piers Coleman,
Electrons, David Ceperly, R. Martin, L. F
nd Louie Phys Rev B, 1986.
Pand O Gunnarsson 1998 Rep. Prog. P
e, M. Grüning, and A. Marini Phys. Rev
D. Sa Stefanucci G., van Leeuwen R. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction.
- Cheat sheet. (to be introduced.)

- You
- TU-K
- o CNR-ISM
- **o** KENET
- **o** MRSK

