

Cheatsheet For GPL v4.5

DRIVING THE EXASCALE TRANSITION

Input file generation and command line interface (yambo -H)

Lower case options are for input file generation

-i	:Initialization		
-o <opt></opt>	:Optics [opt=(c)hi is (G)-space		
	(b)se is (eh)-space]		
-k <opt></opt>	:Kernel [opt=hartree/alda/lrc/hf/sex]		
	hf/sex only eh-space;		
	Irc only G-space		
-y <opt></opt>	:BSE solver [opt=h/d/s/(p/f)i]		
	(h)aydock (s)lepc		
	(d)iagonalization (i)nversion		
-r	:Coulomb potential		
-X	:Hartree-Fock Self-energy and local XC		
-d	:Dynamical Inverse Dielectric Matrix		
-b	:Static Inverse Dielectric Matrix		
-p <opt></opt>	:GW approximations		
	[opt=(p)PA/(c)HOSEX]		
-g <opt></opt>	:Dyson Equation solver		
	[opt=(n)ewton/(s)ecant/(g)reen]		
-1	:GoWo Quasiparticle lifetimes		
-a	:ACFDT Total Energy		

Upper case options are more general

-J <opt></opt>	:Job string identifier		
-V <opt></opt>	Input file verbosity		
-	[opt=RL,kpt,sc,qp,io,gen,resp,all,par]		
-F <opt></opt>	:Input file		
-I <opt></opt>	:Core I/O directory		
-O <opt></opt>	:Additional I/O directory		
-C <opt></opt>	:Communications I/O directory		
-D	:DataBases properties		
-W <opt></opt>	:Wall Time limitation (1d2h30m format)		
-Q	:Don't launch the text editor		
-E <opt></opt>	:Environment Parallel Variables file		
-M	:Switch-off MPI support (serial run)		
-N	:Switch-off OpenMP support (one thread)		
Combination of options			

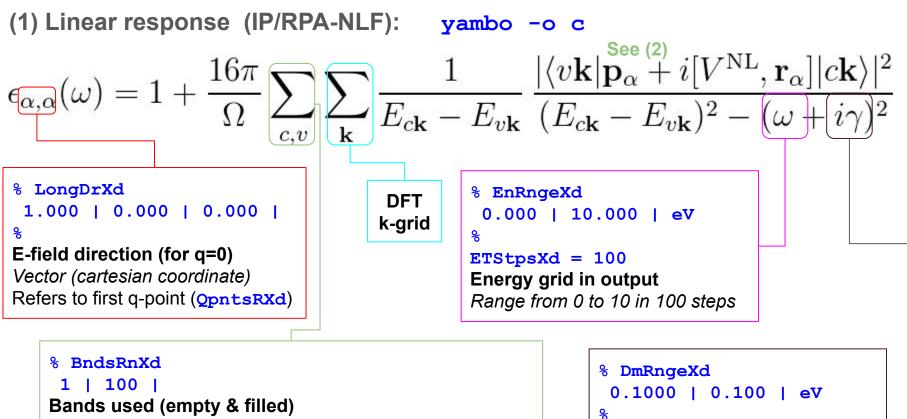
Examples: input file generation/runlevel selection: \$ yambo -o c -k hartree -V RL Optics, LFE \$ yambo -x -g n -p p -V qp GW with PPA \$ yambo -o b -k sex -y h -b Optics, BSE

Example of practical use

Simple

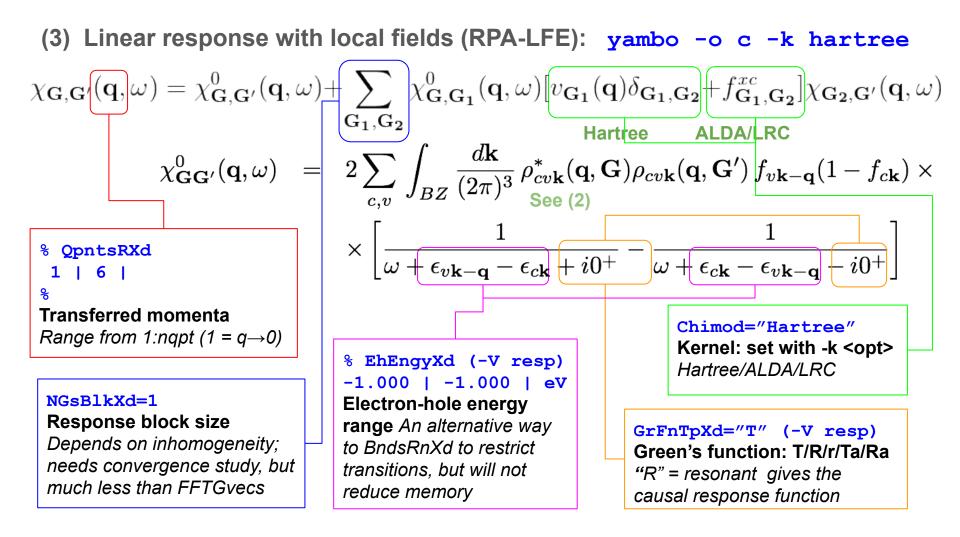
```
$ yambo -F RPA_optics.in -o c -k hartree
$ yambo -F RPA_optics.in
```

- \Rightarrow Generate RPA_optics.in input file (-F)
- \Rightarrow Run yambo. Parameters are loaded from RPA_optics.in (-F)


Advanced

```
$ yambo -F Screening.in -b -V RL
$ yambo -F Screening.in -J EM1S -C EM1S_out
```

- ⇒ Generate Screening.in input file
- \Rightarrow Run yambo to compute screening.
- Human readable files are stored inside EM1S_out folder (-C)
- To all human readable file-names is appended the EM1S string (-J)
- Binary files are stored inside EM1S folder (-J)


\$ yambo -F BSE.in -o b -k sex -y h -b
\$ yambo -F BSE.in -J "BSE,EM1S" -C BSE_out

- ⇒ Generate BSE.in input file
- ⇒ Do a BSE simulation loading the screening from EM1S folder. The parameters inside BSE.in for screening must match the Screening.in input file

Range from 1 to nbnd Reduce range to lower memory. In metals, includes partially filled bands. See also EhEngyXd (-V all) 0.1000 | 0.100 | eV % Broadening of spectra Either a fixed value, or linearly changing between 2 values

FFT and oscillators: yambo -o c -V RL (several runlevels) $\langle n\mathbf{k}|\mathbf{p}+i[V^{\mathrm{NL}},\mathbf{r}]|m\mathbf{k}\rangle$ Dipole/momentum matrix elements $(q \rightarrow 0)$ $|m \mathbf{k} - \mathbf{q}\rangle$ matrix elements (FFT) $\rho_{nm}({m k},{m q},{m G}) = \langle n{m k} \, | \, e^{i({m q}+{m G})\cdot{m r})$ $\phi_{n\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{V}} \sum e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}} c_{n\mathbf{k}}(\mathbf{G})$ where the wavefunction is expanded over reciprocal lattice (G) vectors: Non-local commutator term FFTGvecs = 1 RLNumber of G-vectors (or energy cutoff) for expanding Can greatly increase CPU wavefunctions in transition matrix elements and FFT operations time. Remove by hiding the Units: number of G-vectors (RL), or energy unit (Ry, mHa, eV) SAVE/ns.kb pp pwscf file. Determines size (memory) of calculation. Corresponds to cutoff in DFT calculation; can be much less than geometry cutoff

(4) Linear response within TDDFT: yambo - o c - k ALDA/LRC

$$\begin{split} \chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) &= \chi_{\mathbf{G},\mathbf{G}'}^{0}(\mathbf{q},\omega) + \sum_{\mathbf{G}_{1},\mathbf{G}_{2}} \chi_{\mathbf{G},\mathbf{G}_{1}}^{0}(\mathbf{q},\omega) \underbrace{v_{\mathbf{G}_{1}}(\mathbf{q})\delta_{\mathbf{G}_{1},\mathbf{G}_{2}}}_{\mathbf{Hartree} \quad \mathbf{ALDA/LRC}} \chi_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \\ \chi_{\mathbf{G},\mathbf{G}'}^{0}(\mathbf{q},\omega) &= 2\sum_{c,v} \int_{BZ} \frac{d\mathbf{k}}{(2\pi)^{3}} \rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G}') f_{v\mathbf{k}-\mathbf{q}}(1-f_{c\mathbf{k}}) \times \\ \mathbf{X} \begin{bmatrix} \frac{1}{\omega + \epsilon_{v\mathbf{k}-\mathbf{q}} - \epsilon_{c\mathbf{k}} + i0^{+}} - \frac{1}{\omega + \epsilon_{c\mathbf{k}} - \epsilon_{v\mathbf{k}-\mathbf{q}} - i0^{+}} \end{bmatrix} \end{split}$$

Depends on inhomogeneity; needs convergence study, but much less than FFTGvecs

FxcGRLc=1 XC-kernel size Needs convergence study. Much less than FFTGvecs

LRC alpha=1

LRC fitting parameter Long-range tail of the f_{xc} kernel. Depends on the system: the larger the screening the smaller this parameter.

Chimod="ALDA"

Kernel: set with -k <opt> <opt>=ALDA <opt>=LRC: semi-empirical kernel with proper long-range behaviour. It needs a fitting parameter! (5) Screening (RPA): yambo -d

See sheet (3): this runlevel computes the inverse dielectric matrix from X(G,G')

$$\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G},\mathbf{G}'} + v_{\mathbf{G}}(\mathbf{q})\chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega)$$

Connection with experiment:

$$\epsilon_M(\omega) = \lim_{\mathbf{q} \to 0} \frac{1}{\epsilon_{\mathbf{G}=\mathbf{0},\mathbf{G}'=\mathbf{0}}^{-1}(\mathbf{q},\omega)}$$

Abs(\omega) = Im \epsilon_M(\omega) EELS(\omega) = -Im \frac{1}{\epsilon_M(\omega)}

(6a) Coulomb integrals RIM (Random Integration Method):

$$\begin{split} v(\boldsymbol{q}+\boldsymbol{G}) = & \frac{4\pi}{|\boldsymbol{q}+\boldsymbol{G}|^2} \\ \int_{Bz} & \frac{d^3q}{2\pi^3} f(\boldsymbol{q},\boldsymbol{G}) v(\boldsymbol{q}+\boldsymbol{G}) \approx \sum_{q_i} f(q_i,\boldsymbol{G}) v(q_i+\boldsymbol{G}) \Omega_{q_i} \end{split} \text{Discretization of Bz for integrals} \end{split}$$

A better approximation is given by:

$$\int_{Bz} \frac{d^3q}{2\pi^3} f(q,G) v(q+G) \approx \sum_{q_i} f(q_i,G) I_{q_i}(G)$$

Monte Carlo integral of the Coulomb potential in each region the Bz has been dissected by the q point sampling

$$I_{q_i}(G) = \int_{R_{\Gamma}} \frac{d^3 q'}{(2\pi)^3} v(q + q' + G)$$

Tip: 1. Needed for non 3D system to avoid divergences for small q

2. Needed to build cutoff potential with box shape

Random Integration Method RandQpts=1000000 Number of q points to perform Monte Carlo Integration, RandGvec= 1 RL Number of G vectors the RIM is calculated Tip: RandGvec=1 (gamma) is usually enough. 1 Million q points is usually accurate.

yambo

(6b) Coulomb cutoff :

$$v(\boldsymbol{q} + \boldsymbol{G}) = \frac{4\pi}{|\boldsymbol{q} + \boldsymbol{G}|^2}$$

yambo -r

Truncation of the Coulomb potential for non 3D system to speed up convergence with respect the vacuum

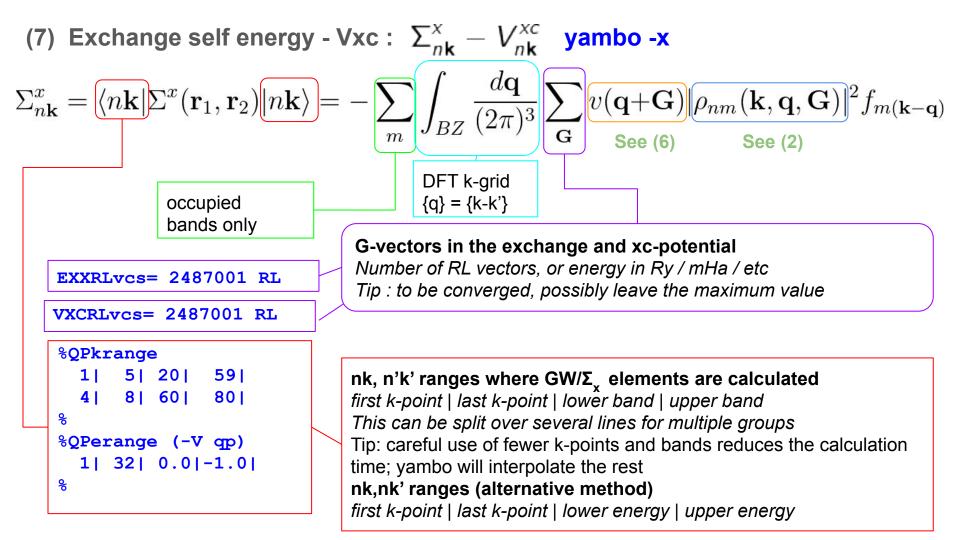
$$V_c(\mathbf{r}) = egin{cases} rac{1}{|\mathbf{r}|}, & ext{if } \mathbf{r} \in S, \ 0, & ext{otherwise}. \end{cases}$$

- Sphere XYZ: assign: CUTRadius= 10.0 a.u
- Cylinder Z: assign CUTRadius and CUTCylLen (CUTCylLen=0 indicates infinite cylinder)
- Box Z: assign CUTBox

% CUTBox

```
0.00 | 0.00 | 32.00 | # [CUT] [au]
Box sides
```

```
%
```


Box side=0 means do not cut in that direction

S: interactting region: CUTGeo= "box Z" X/Y/Z or XY/XZ/YZ or XYZ

- Possible region:
- sphere (0D for molecules),
- cylinder (1D for polymers, tubes, etc),
- box (0D, 1D, 2D).

XYZ: cut in all directions Box: XY: cut in XY only, etc... Cylinder X/Y/Z indicates cylinder axis

Tip: When using Box shapes, the RIM is also needed to calculate the potential. In Box for large enough boxes assigns Box side slightly smaller than the cell box

(8) Correlation part of self energy:

yambo -g n

$$\Sigma_{n\mathbf{k}}^{c}(\omega) = \langle n\mathbf{k} | \Sigma^{c} | n\mathbf{k} \rangle = i \sum_{m} \int_{BZ} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G},\mathbf{G}'} \frac{4\pi}{|\mathbf{q} + \mathbf{G}|^{2}} \rho_{nm}(\mathbf{k},\mathbf{q},\mathbf{G}) \rho_{nm}^{*}(\mathbf{k},\mathbf{q},\mathbf{G}')$$

$$\times \int d\omega' G_{m\mathbf{k}-\mathbf{q}}^{0}(\omega-\omega') \epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega')$$

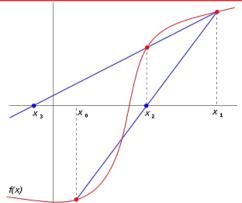
$$\frac{\sqrt{2}}{2} \int \frac{\partial \mathbf{q}}{\partial \omega'} \int \frac{\partial \mathbf{q}}{\partial \omega'} \int \frac{\partial \mathbf{q}}{\partial \mathbf{q}} \int \frac{\partial \mathbf{q}}{\partial \mathbf{q}}$$

calculation time; yambo will interpolate the rest

(8a) Dyson Solver: yambo -g n/s

$$E_{nk}^{QP} = \epsilon_{nk} + \langle \psi_{nk} | \Sigma(E_{nk}^{QP}) - V_{xc} | \psi_{nk} \rangle$$

DysSolver= "n" First order expansion around KS eigenvalue


$$E_{nk}^{QP} = \epsilon_{nk} + Z_{nk} \langle \psi_{nk} | \Sigma(\epsilon_{nk}) - V_{xc} | \psi_{nk} \rangle$$

$$Z_{nk} = \left[1 - \frac{d\Sigma_{nk}(\omega)}{d\omega}\Big|_{\omega = \epsilon_{nk}}\right]^{-1} \quad \text{dScStep= 0.10000 eV # [GW] Energy step to evaluate Z}$$

DysSolver= "s" Secant iterative method

https://en.wikipedia.org/wiki/Secant_method

$$x_n = x_{n-1} - f(x_{n-1}) rac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})} = rac{x_{n-2} f(x_{n-1}) - x_{n-1} f(x_{n-2})}{f(x_{n-1}) - f(x_{n-2})}$$

(9) Plasmon Pole approximation (PPA): yambo -р р

Components of the Dielectric matrix approximated has a single pole functions:

 $\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega) \sim \delta_{\mathbf{G},\mathbf{G}'} + \mathbf{R}_{\mathbf{G},\mathbf{G}'}(\mathbf{q})[(\omega - \Omega_{\mathbf{G},\mathbf{G}'}(\mathbf{q}) + i0^+)^{-1} - (\omega + \Omega_{\mathbf{G},\mathbf{G}'}(\mathbf{q}) - i0^+)^{-1}]$

Residuals $R_{\mathbf{G},\mathbf{G}'}(\mathbf{q})$ and energies $\Omega_{\mathbf{G},\mathbf{G}'}(\mathbf{q})$ are found by imposing the PPA to reproduce the exact ϵ^{-1} function at $\omega = 0$ and $\omega = iE_{PPA}$ with E_{PPA} being a suitable user-defined parameter.

$$R_{\mathbf{G},\mathbf{G}'}(\mathbf{q}) = \frac{\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega=\mathbf{0})\Omega_{\mathbf{G},\mathbf{G}'}}{2}$$
$$\Omega_{\mathbf{G},\mathbf{G}'} = E_{PPA}\sqrt{\frac{\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega=\mathbf{E}_{\mathbf{PPA}})}{\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega=\mathbf{0})-\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega=\mathbf{E}_{\mathbf{PPA}})}}$$

The QP energies should not depend too much on the choice of imaginary plasmon frequency. **Tip:** Choose a value higher in energy than the plasmon peak (EELS spectrum) **BndsRnXp** 1 | 100 |
 Bands used (empty & filled)
 Range from 1 to nbnd
 Reduce range to lower memory.
 NGsBlkXp= 100 RL
 Response block size

PPAPntXp= 27.21138 eV PPA imaginary energy

(10a) Construction of the BSE Hamiltonian: yambo -o b -k sex -b

BSE is rewritten as an eigenvalue problem for the 2 particle Hamiltonian: size of matrix $[N_v x N_c x K_{BZ}] x [N_v x N_c x K_{BZ}]$

$$H_{v'c'\mathbf{k}'}^{exc} = \underbrace{\left(\epsilon_{c\mathbf{k}} - \epsilon_{v\mathbf{k}}\right)}_{v'c'\mathbf{k}'} \delta_{c,c'} \delta_{v,v'} \delta_{\mathbf{k}\mathbf{k}'} + \left(f_{c\mathbf{k}} - f_{v\mathbf{k}}\right) \underbrace{\left[2\bar{V}_{vc\mathbf{k}} - W_{vc\mathbf{k}}\right]}_{v'c'\mathbf{k}'} - W_{v'c'\mathbf{k}'}\right]}_{\text{Lorenton DFT + QP corrections:}}$$

$$KfnQPdb= "E < ./SAVE/ndb.QP" \\ Location of QP corrections database \\ From previous GW calculation \\ OR \\ isolarized band | upper band | band | upper$$

(10b) Construction of the BSE kernel:

```
yambo -o b -k sex -b
```

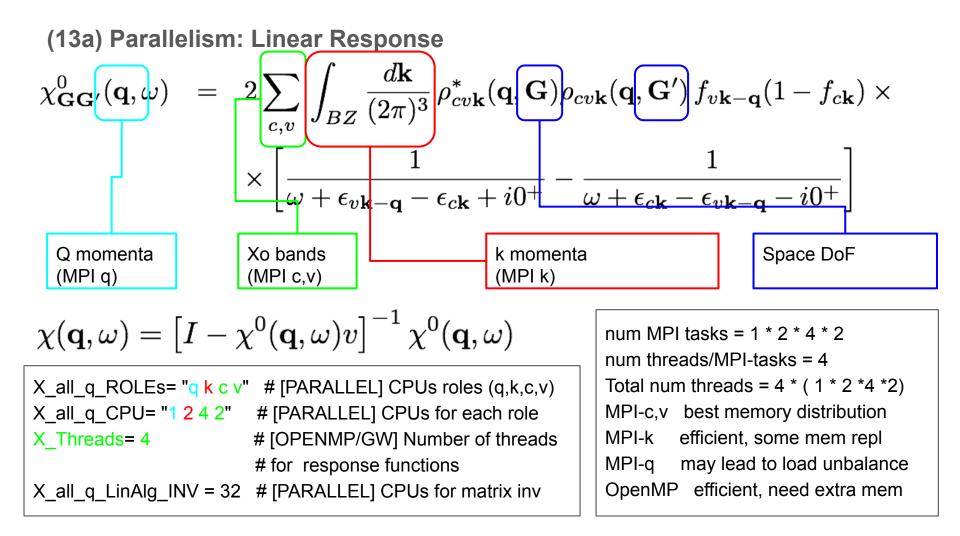
Electron-hole exchange part (from Hartree potential - local field effects):

$$K_{vc\mathbf{k},v'c'\mathbf{k}'}^{x} = \bar{V}_{vc\mathbf{k},v'c'\mathbf{k}'} = \frac{1}{\Omega} \sum_{\mathbf{G}\neq\mathbf{0}} v(\mathbf{G}) \langle c\mathbf{k} | e^{i\mathbf{G}\mathbf{r}} | v\mathbf{k} \rangle \langle v'\mathbf{k}' | e^{-i\mathbf{G}'\mathbf{r}} | c'\mathbf{k}' \rangle$$

$$\begin{array}{c} \text{BSENGexx = 30 Ry} \\ \text{Components of Hartree potential} \end{array}$$

Electron-hole attraction part (from screened exchange potential - excitonic effects):

(11a) BSE solver (diagonalisation): yambo -y d

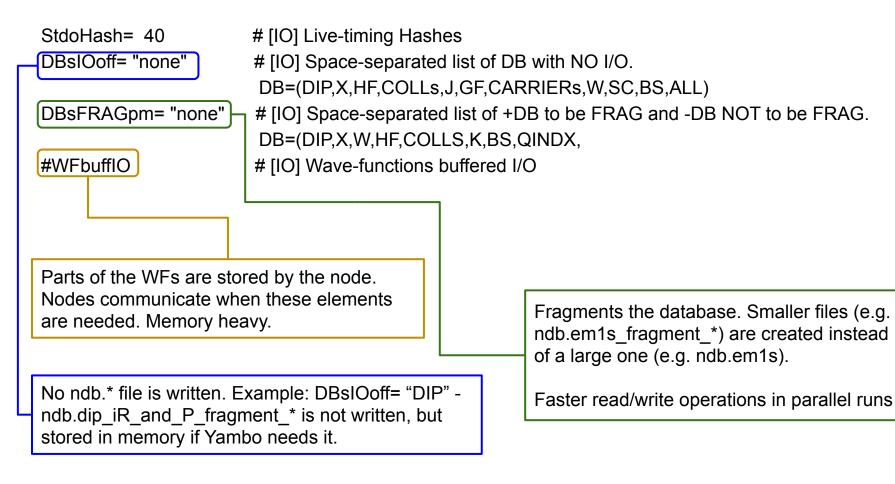

The macroscopic dielectric function is obtained as:

(11b) BSE solver (Lanczos-Haydock): yambo -y h

The macroscopic dielectric function is obtained as:

$$\epsilon_{M}(\omega) \equiv 1 - \lim_{\mathbf{q} \to 0} \frac{8\pi}{|\mathbf{q}|^{2}\Omega} \sum_{vc\mathbf{k}} \left| \langle v\mathbf{k} - \mathbf{q} | e^{-i\mathbf{q}\mathbf{r}} | c\mathbf{k} \rangle \right|^{2} \frac{1}{(\omega - a_{1}) - \frac{b_{2}^{2}}{(\omega - a_{2}) - \frac{b_{3}^{2}}{\cdots}}}.$$
Where the a's and b's are obtained iteratively from Lanczos algorithm
$$\frac{\mathbf{BSHayTrs} = -0.02000}{\mathbf{Threshold for accuracy of the iterative process}}$$
Negative sign: average difference, over the energy range, of two consecutive approximations to the spectrum
$$\frac{Positive sign:}{Positive sign:} maximum difference, over the energy range, of two consecutive approximations to the spectrum}$$

In addition to input parameters defined in (11a)


(13b) Parallelism: Correlation part of self energy

$$\Sigma_{n\mathbf{k}}^{c}(\omega) = \langle n\mathbf{k} \rangle \Sigma^{c} | n\mathbf{k} \rangle = i \sum_{m} \int_{BZ} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G},\mathbf{G}'} \frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}} \rho_{nm}(\mathbf{k},\mathbf{q},\mathbf{G}) \rho_{nm}^{*}(\mathbf{k},\mathbf{q},\mathbf{G}') \\ \times \int d\omega' G_{m\mathbf{k}-\mathbf{q}}^{0}(\omega-\omega') \epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega')$$
QP states
(MPI qp)

G bands
(MPI b)

Q transferred momenta
(MPI q)

Q transferred momenta

SE_ROLEs= "q qp b"# [PARALLEL] CPUs roles (q,qp,b)SE_CPU= "1 2 8"# [PARALLEL] CPUs for each roleSE_Threads= 4# [OPENMP/GW] Number of threads# for self-energy

num MPI tasks = 1 x 2 x 8 num threads/MPI-tasks = 4 Total num threads = 4 x (1 x 2 x 8) MPI-b best memory distribution MPI-q no communication MPI-q leads to load unbalance OpenMP very efficient

(14) IO: yambo -V io

Input file generation and command line interface (ypp -H)

Lower case options are for input file generation

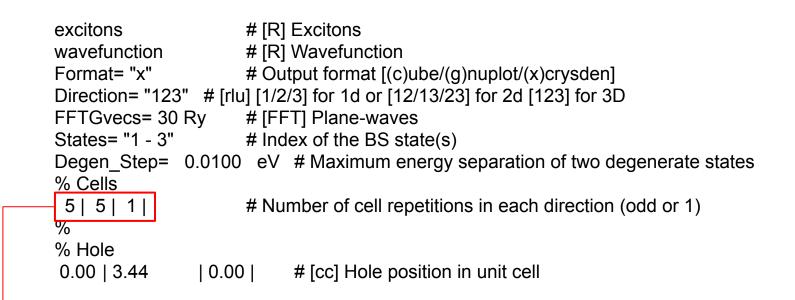
(same upper case options as yambo)

- -k <opt> :BZ Grid generator [(k)pt,(q)pt,(s)hifted,(h)igh symmetry,(r)andom]
- -q <opt> :(g)enerate-modify/(m)erge quasi-particle databases
- -i :Wannier 90 interface
- -b :Read BXSF output generated by Wannier90
- -s <opt> :Electrons [(w)ave,(d)ensity,(m)ag,do(s),(b)ands]
- -e <opt> <opt> :Excitons [(s)ort,(sp)in,(a)mplitude,(w)ave;qindx]
- -f :Free hole position [excitons plot]
- -m :BZ map fine grid to coarse
- -w <opt> :WFs:(p)erturbative SOC mapping or (c)onversion to new I/O format
- -y :Remove symmetries not consistent with an external perturbation

ypp_rt / ypp_nl specific				
-t <opt></opt>	:TD-polarization [(X)response]			

Use (ypp) \$ ypp -F excitons.in -e w qindx -J BSE \$ ypp -F excitons.in -J "EXC_WFs,BSE" -C BSE_out

ypp_nl specific


-u

:Non-linear response analysis

Use (ypp_rt) \$ ypp_rt -F abs.in -t X -J TD-SEX \$ ypp_rt -F abs.in -J "ABS,TD-SEX" -C TD-SEX_out

(YPP 1) Postprocessing - exciton plot:

```
ypp -e w qindx
```


Excitonic wavefunction does not have the periodicity of the e and h wavefunctions but is generally more extended, with a fictitious periodicity due to the k-points sampling

Input file generation and command line interface (yambo_rt / yambo_nl -H)

Common to yambo_rt and yambo_nl

- -i :Initialization
- -r :Coulomb potential
- -b :Static Inverse Dielectric Matrix
- -e :Evaluate Collisions

-v <opt> :Self-Consistent Potential opt=(h)artree,(f)ock,(coh),(sex),(cohsex),(d)ef,(ip) (h)artree can be combined with others, i.e. hf, hsex, ...

Specific to yambo_rt

-n <opt> :Real-time dynamics [opt=(p)ump or probe,(pp)ump & probe, (pn) n external fields]

Specific to yambo_nl

-u :Non-linear spectroscopy

Example of practical use

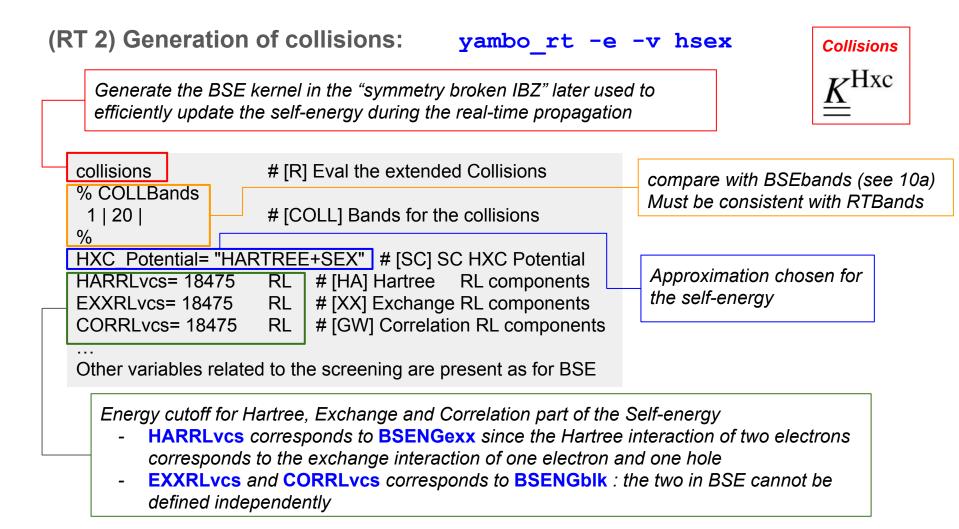
\$ yambo -F Collisions.in -e -v hsex

- \$ yambo -F Collisions.in -J "COLL,EM1S" -C COLL_out
- \$ yambo -F TD-SEX.in -n p -v hsex

\$ yambo -F TD-SEX.in -J "TD-SEX,COLL" -C TD-SEX_out

- \Rightarrow Generate Collisions.in input file
- \Rightarrow Run yambo to compute Collisions (use EM1S db)
 - ⇒ Generate TD-SEX.in input file
 - \Rightarrow Do a TD-SEX simulation loading the collisions from COLL folder.

(RT 0) TD-IP propagation with density matrix: yambo_rt -n p

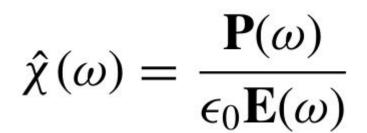

$$i\hbar\partial_{t} \rho_{\mathbf{k}}(t) = \left[\underline{h}_{\mathbf{k}}^{\mathrm{rt}}[\rho] + \underbrace{U_{\mathbf{k}}^{\mathrm{ext}}(t)}_{\mathbf{k}}, \rho_{\mathbf{k}}(t)\right] - i\Gamma_{\mathbf{k}}\rho_{\mathbf{k}}$$
All underlined quantities are matrices of size
 n^{2} with $n=RTbands(2) - RTbands(1)$
See next slides for definitio of RTbands
Inverse dephasing time
The external field defined in the input file

(RT 1) TD-IP propagation with density matrix: yambo_rt -n p

(basic parameters)

(field parameters)

	X		<u>% Field1 Frea</u>	
% RTBai 1 20 % Integrato PhLifeTii RTstep=	otential= "NONE" nds	# [R] Real-Time dynamics # [SC] SC HXC Potential	0.00 0.00 eV %	# [RT Field1] Frequency
		# [RT] Bands	Field1_Width= 0.000000 fs	# [RT Field1] Intensity # [RT Field1] Width
	r="RK2" ne= 0.000000 fs 10.000000 as = 100.0000 fs	# [RT] Integrator. # [RT] Dephasing Time # [RT] Real Time step length # [RT] Simulation Time		# [RT Field1] Kind # [RT Field1] Polarization # [RT Field1] Versor
Potential. "HARTREE" and "DFT" can be computed on-the-fly. For non local potentials, i.e. "HF", "HSEX" a preliminary calculation of the collisions is needed (see next)		Field kind. Options are: - DELTA: Delta pulse in time - SIN: sin function - QSSIN: sin convoluted with a Gaussian		
bands	Integrator the propagation: - step kind: EULER, EXP, INV - number of steps: SIMPLE, RK2, HEUN - more: RWA (analytical integration of IP term)		- PULSE: sin convoluted with a	a time limited function
see [RT 0]			Polarization of the electric field	Frequency of the sin function for some pulses
		Dephasing time		· ·


(RT 3) TD-SEX propagation with density matrix: yambo_rt -n p -v hsex

The input file for the case with the collisions has the same input variables of the TD-IP run plus same the keywords for the HXC potential used in the file for the collisions HXC_Potential= "HARTREE+SEX" # [SC] SC HXC Potential HARRLvcs= 18475 RL # [HA] Hartree RL components EXXRLvcs= 18475 RL # [XX] Exchange RL components CORRLvcs= 18475 RL # [GW] Correlation RL components

(RT 4) Post-processing:

ypp_rt -t X

RealTime # [R] Real-Time Post-Processing RT X # [R] Response functions Post-Processing Xorder=1 # Max order of the response/exc functions % EnRngeRt 0.00 | 10.00 l eV # Energy range % ETStpsRt=1001 # Total Energy steps % TimeRange 0.00 | 0.00 | fs # Time-window where processing is done % DampMode= "LORENTZIAN" # Damping type (NONE | LORENTZIAN | GAUSSIAN) DampFactor= 0.10000 eV # Damping parameter

(NL 0) Non-linear response: yambo -u

For the non-linear response, Yambo solves a Time-Dependent Schrodinger Equation for each k-point: \sim

$$i\hbar\partial_t |v_{m\mathbf{k}}\rangle = \left(h_{\mathbf{k}}^{\mathrm{rt}}[\rho] + \mathrm{i}\boldsymbol{\mathcal{E}}\cdot\tilde{\partial}_{\mathbf{k}}\right)|v_{m\mathbf{k}}\rangle$$

This equation is numerically integrated with the algorithm NLintegrator and time step NLStep.

The time-dependent valence bands: $|v_{i\mathbf{k}}(t)\rangle$

are expanded in the Kohn-Sham basis set as:
$$|v_{i{f k}}(t)
angle=\sum_{j}c_{i,{f k}}^{j}(t)|u_{j{f k}}
angle$$

where the j-sum run over the NLBands range chosen in the calculation.

(NL 1) TD-IP propagation with wave-function: yambo_nl -u -V nl

(basic parameters)

(field parameters)

nloptics % NLBands	# [R NL] Non-linear optics	% NLEnRange 0.200000 8.000000 eV
4 5 % NLverbosity= "lo NLtime=55.0000 NLintegrator= "0 NLCorrelation= NLDamping= 0.	000 fs # [NL] Simulation CRANKNIC" # [NL] Integrator "IPA" # [NL] Correlation	
Simulation ler	Damping term	Field kind. Options are: - DELTA: Delta pulse in time (for linear resp.) - SOFTSIN: sinusoidal field (for non-linear resp.)
	natically sets the	Frequency range

and steps of the sin function

(NL 2) Results Analysis: ypp_nl -u

(linear optics)

(non linear optics)

nonlinear Post-Processing		# [R] NonLinear Optics		nonlinear Post-Processing	# [R] NonLinear Optics
	Xorder= 1 % TimeRange -1.000000 -1.000000 fs	# Max order of the response	Г	Xorder= 5 % TimeRange	# Max order of the response
	processing is done %			-1.000000 -1.000000 fs processing is done %	# Time-window where
	ETStpsRt= 200 % EnRngeRt 0.00000 10.00000 eV	# Total Energy steps # Energy range		ETStpsRt= 200 % EnRngeRt 0.00000 10.00000 eV	# Total Energy steps # Energy range
	% DampMode= "LORENTZIA DampFactor= 0.100000 6			% DampMode= "NONE" DampFactor= 0.100000	eV # Damping parameter
		[]			
		Post-processing damping (only for linear optics)		Response order (1 for li	near optics, 4 or 5 for SHG)

yambopy - python module

io

Yamboln: read, write and manipulate yambo input files YamboOut: read yambo output files and save in .json

analyse

analyse: read .json files generated with yamboout and plot them together **recipes:** user contributed scripts

bse

read exciton info from ypp runs and plotting tools

dbs

YamboLatticeDB: read lattice parameters, symmetries and k-points from ns.db1 YamboElectronsDB: electronic states from ns.db1

YamboDipolesDB: dipole matrix elements from ndb.dip*

YamboStaticScreeningDB: static dielectric screening from ndb.em1s*

YamboQPDB: read the quasiparticle energies db ndb.QP

YamboExcitonDB: Read exciton info from yambo db ndb.BS

YamboElectronPhononDB: Read the

electron-phonon matrix elements from ndb.gkkp YamboRTDB: read the real time dbs ndb.RT (...)

yamboparser

parsing of files, databases, etc

yambopy - scripts

analysebse, plotem1s, analysegw, mergeqp, test, plotexciton

qepy

Pwin, Phin, Dynmatin, Projwfcin read, write and manipulate Quantum espresso input files (pw.x, ph.x, dynmat.x, projwfc.x respectively)

PwXML, ProjwfcXMI read output files (datafile.xml, datafile-schema.xml, projwfc.xml)

Auxiliary tools for QE

schedulerpy

scheduler

submit and run codes with the same interface for: bash, pbs, oar

(YP 2) Yambo-python

quick-reference

qepy

from qepy import *

#create input file from scratch
qe = PwIn()

#input structure
qe.atoms = [['Si',[0.125,0.125,0.125]],
 ['Si',[-.125,-.125,-.125]]]
qe.atypes = {'Si': [28.086,"Si.pbe-mt_fhi.UPF"]}

#control variables
qe.control['prefix'] = "'si'" #strings need
double "''"
qe.control['wf_collect'] = '.true.' #Logicals

#system
qe.system['celldm(1)'] = 10.3
qe.system['ecutwfc'] = 30
qe.system['occupations'] = "'fixed'"
qe.system['nat'] = 2
qe.system['ntyp'] = 1
qe.system['brav'] = 2

#electrons
qe.electrons['conv_thr'] = 1e-8

#write file
qe.write('si.scf')

yambopy

from yambopy import *

#create input file in 'bse' folder with SAVE
y = YamboIn.from_runlevel('yambo -b -o b -k sex -y d -V
all',folder='bse')

define variables
y['FFTGvecs'] = [30,'Ry'] # scalar + units
y['BndsRnXs'] = [1,30] # array with integers
y['BSEBands'] = [3,6] # array with integers
y['BEnRange'] = [[0,8],'eV'] # array + units
y['BEnSteps'] = 500 # numbers
y['KfnQPdb'] = 'E < yambo/ndb.QP' #strings</pre>

#write the file
y.write('bse/yambo_run.in')

#create ypp input file
y = YamboIn.from_runlevel('ypp -e -a -V
all',filename='ypp.in')

#read Local file
y = YamboIn.from_file(filename='bse/yambo_run.in')

#analyse data in the bse folder
ya = YamboAnalyser('bse')
print(ya)

plot eel and eps from BSE
ya.plot_bse('eel')
ya.plot_bse('eps')

schedulerpy

from schedulerpy import *

scheduler 1 node and 4 cores
shell = Scheduler.factory(nodes=1,cores=4)

scheduler of pbs type
shell = Scheduler.factory(scheduler='pbs')

#add commands to the shell
shell.add_command("echo 'hello world'")

#view commands on the screen
print(shell)

#write to a file
shell.write("commands.sh")

#submit or run the job
shell.run()

#clean scheduler commands
shell.clean()

yambopy (bash)

\$ yambopy #lists all possible commands

\$ yambopy plotem1s #help about this command

Happy Yamboing!

Computational School on Electronic Excitations in Novel Materials Using the Yambo Code ICTP Trieste, Italy January 27, 2020 - January 31, 2020

DRIVING THE EXASCALE TRANSITION

The Abdus Salam International Centre for Theoretical Physics

(CTP

