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Chapter 1

Introduction

Thermal effects on the electronic band structure of solids due to electron-phonon
interactions have been explored in the 1980’s by Manuel Cardona et al. from
both the experimental and theoretical sides using a perturbative approach in
the electron-phonon interaction [1, 2].

This approach has been then extended to include dynamical effects [3, 4],
more efficient sampling techniques [5, 6] and applied in the study of carrier
lifetime, mobility, transport, kinks and satellites (for a review see Ref. [7]). Si-
multaneously with these perturbative approaches a new way to evaluate thermal
effects emerged in the scientific literature : the use of finite difference displace-
ments (FDD). Numerous efficient sampling techniques have been proposed in
the literature [8, 9, 10] that allow a systematic study electronic properties at
finite temperature.

These methods have two main advantages. First they are much more efficient
than standard classical or path-integral molecular dynamics [11]. Second, finite
difference displacements allow the calculation of thermal effects on observables
that are difficult to treat within the perturbative approaches as for instance
topological observables [12], nuclear magnetic response [13] or x-ray absorption
near-edge structures [14].

The disadvantage of these approaches is that they require large supercells for
the calculations to converge, and do not allow the inclusion of dynamical effects
[4]. Thank to the FDD approach it was possible to investigate the correlations
effects on electron-phonon coupling in bulk materials [15, 16] and finite systems
[17]. In this work we apply the finite difference displacements proposed by some
of the authors [10] to study thermal effects on the excitons in two systems: Sil-
icon and two dimensional molybdenum disulfide. Thermal effects on the band
gap have been studied since the 1950’s, and recently it has also been shown that
many-body correction to the band structure can strongly renormalize EPC, but
little is known about the thermal effects on the exciton binding energy. For some
systems, like hexagonal boron nitride, discordant results have been reported in
the literature, some reporting blue shift and other red shift of excitons with
temperature [18, 19]. In both these works electron-phonon coupling enters in
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2 CHAPTER 1. INTRODUCTION

the Bethe-Salpeter equation as single-particle lifetimes, disregarding the fact
that excitonic effects can strongly renormalize single-particle electron-phonon
coupling matrix elements [20]. In other materials, as for example TiO2, some
features in the absorption spectrum has been predicted to undergo a blueshift
when increasing temperature while others shift to the red [21]. In monolayer
black-phosphorus, experimental measurements show that excitons does not fol-
low the usual Varshni’s model [22], but blueshift with temperature [23]. Part of
this behaviour may originate from the single-particle band structure due to the
interplay between thermal expansion and electron-phonon coupling [24] or due
to correlation effects [16]. But without a precise calculation it is very difficult
to differentiate these effects from thermal behaviour of the excitonic binding
energy. For this reason we decide to investigate it using finite difference dis-
placement method that is easy to implement and to control. Finally it would be
very useful to have a scheme for accounting coupling with phonons at the BSE
level, in particular for polar semiconductors where an important renormaliza-
tion of the binding energy was predicted and observed [25, 26]. Moreover, when
only one excitonic peak is resolved in the experimental data, it is not easy to
estimate the exciton binding energy, because the simple hydrogenic model is of
no help [27].



Chapter 2

Theory

2.1 Density Functional Theory

In this work we make great use of the Density Functional Theory (DFT), devel-
opped at first by Hohenberg, Kohn and Sham in the 1960’s. The first Hohenberg
and Kohn theoren states that all the ground state properties of a many-electrons
system are uniquely determined by its electronic density. So the Hamiltonian
and the total ground state energy can be written as functionals of the ground
state density : Ĥ = Ĥ[n] and E = E[n]. Kohn and Sham [28] introduced a sep-
aration of the terms contributing to the total energy E, to map the study of the
interacting system to the study of a simpler non interacting fictitious system.
In the Kohn-Sham single particle scheme, the total energy of the interacting
system is written as :

E[n] = TKS [n] + EH [n] +

∫
drn(r)vext(r) + Exc[n] (2.1)

where TKS is the kinetic energy of a non interacting system with density n, EH
is the Hartree contribution to the total energy :

EH [n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|

and Exc is the remaining part of the total energy which contains the exchange-
correlation contributions and the difference in kinetic energy between the inter-
acting system and the non-interacting system. Finally the Kohn-Sham equation
write :

[−1

2
∇2 + vext + vH + Vxc]φi(r) = εiφi(r) (2.2)

which is the equivalent of the Schrödinger equation for the non-interacting fic-
titious system. Its ground state density is by construction the same than the
interacting system :

n(r) =
∑
i

fi|φi(~r)|3 (2.3)
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4 CHAPTER 2. THEORY

with fi being the occupation number of the state i. In Eq 2.2, Vxc = δExc[n]
δn

is the exchange and correlation potential of the interacting system, and vext
is the same external potential than in Eq 2.1. It is now possible to solve the
Kohn-Sham equations (Eq 2.2, Eq 2.3) self consistently and calculate the den-
sity of the interacting (real) system with Eq 2.1 if we approximate Exc[n]. Once
the density is known, it is possible to calculate the ground state energy of the
interacting system and hence its ground state geometry.

There exists several methods to approximate the exchange-correlation energy
functional. For example, the first one was proposed by Kohn and Sham in their
original paper [28]. In principle, it is valid only for systems with slowly varying
density. They called it the Local Density Approximation (LDA), and it is given
by :

ELDAx c =

∫
drn(r)εhegxc (n(r)) (2.4)

where εhegxc (n(r)) is the exchange-correlation energy per electron of an homoge-
neous electron gas of density n. In this approximation, the exchange-correlation
energy depends only on the local value of the density. This approximation is
simple but has appeared to be very accurate to compute ground state properties
of complex systems.

Another approximation is the Generalized Gradient Approximation (GGA),
in which the energy functional depends also on the derivative of the density :

EGGAxc =

∫
drf(n(r),∇rn) (2.5)

This generally yields more accurate results for heterogeneous electronic density.
The approximation on the form of the energy functional is not the only one
needed to compute quantities with DFT. The pseudopotentials are used to
model the interaction between the positive ion and the electrons, in order to
eliminate the singularity in the electrostatic potential of the nucleus, and the
influence of core electrons. Indeed, core electrons are usually not involved in the
chemical bonds and they act as a repulsive potential for the valence electrons.
A pseudopotential replaces the nuclei and the core electrons and verifies several
conditions : the effective and the original potential have the same value outside
of a core region of radius rc ; the effective valence wave functions are the same
than the ones of a certain reference configuration of the original atom ; the
energies of the valence states of the pseudoatom are the same than the ones of
the original atom ; and in the core region, the pseudoatom wave functions do
not have any nodes. The final requirement for a pseudopotential is to conserve
the norm of the pseudo wave functions. In a periodic system, each electronic
eigenfunction can be expressed as a sum of plane waves :

ψn,k(r) =
∑
G

cn,k+Ge
i(k+G)r (2.6)

where k is a vector in the reciprocal space that spans the first Brillouin zone,
and G are the reciprocal lattice vectors. In practice, we need to cut this infinite
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summation to be able to compute it. In fact, the Brillouin zone is sampled with
a finite number of k points, and the summation over the G vectors is limited
by a cutoff in the kinetic energy. It is assumed that the wave functions at the k
points are representative of all the wave functions in the neighbourhood of the
corresponding k point in the Brillouin zone. In practice we need to test for the
convergence of the results depending on the number of k points.

To choose the cutoff in kinetic energy, the wave functions are approximated
using only the coefficients below a threshold Ecut :

1

2
| k +G |2≤ Ecut (2.7)

Checking the convergence of results is needed to set this parameter as well.

2.1.1 Structure optimization

TODO:
1) Describe how forces are calculated in DFT
2) Describe the algoritm used to optimize the structure, the BFGS quasi-newton
algorithm (see on WIKI)

2.2 Phonons

In this work we need to compute the normal modes of vibration of the crystals.
Since each mode has its own wavelength and momentum, we call associate a
quasi-particle that has the same wavelength and momentum to each mode,
and these particles are called phonons. We study a chain of ions of mass M
separated by a distance a, so that the Bravais lattice vectors are R = na with n
an integer number. We note u(na) the displacement of ion around it equilibrium
position na. We assume the system to be under the harmonic approximation,
with the potential energy arising only from first neighbors interaction, following
Ashcroft-Mermin notations :

Uharm =
1

2
K
∑
n

[u(na)− u([n+ 1]a)]
2

Where K = φ′′(a), φ(x) being the interaction energy between two ions separated
by a distance x. The equations of motion for the ions are given by Newton’s
second law :

Mü(na) =
∂Uharm

∂u(na)
= −K [2u(na)− u([n− 1]a)− u([n+ 1]a)] , (2.8)

These equations are the same than those of ions connected by massless springs
with constant K. We assume Born-von Karman boundary conditions :

u([N + 1]a) = u(a) ; u(0) = u(Na)
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It is as if the two ends of the chain of N ions were connected one to another
with an extra spring. We are looking for solutions in the form :

u(na, t) ∝ ei(kna−ωt) (2.9)

They satisfy the boundary conditions :

eikNa = 1 (2.10)

This implies that k has the form :

k =
2π

a

n

N
, n an integer.

We can see that the displacement u(na) in 2.9 is unchanged by shifting k by
2π/a. It means there are only N values of k that yield consistent solutions. We
take them between −π/a and π/a. This interval is called the First Brillouin
Zone. One can show that the solutions are proportional to either the real or the
imaginary part of the ansatz in 2.9 :

u(na, t) ∝
{

cos(kna− ωt)
sin(kna− ωt)

}
From these results we can derive a relation between ω and k which we call the
dispersion relation :

ω(k) =

√
2K(1− coska)

M
= 2

√
K

M

∣∣∣∣sin 1

2
ka

∣∣∣∣
The solutions in 2.2 describe waves propagating along the chain with phase

velocity c = ω/k, and group velocity v = ∂ω/∂k. We plot the dispersion curve
in Figure 2.1. When k is small compared with π/a, ω is linear in k :

ω =

(
a

√
K

M

)
|k| (2.11)

Then the group velocity is the same as the phase velocity. However when the
wavelength becomes short enough to be compared to the interparticle spacing,
the dispersion relation is not linear anymore and it becomes flat when k reaches
±π/a.

Now let us consider the same linear chain with two atoms per unit cell, with
equilibrium positions na and na + d. We suppose d ≤ a/2 so that the force
between neighboring ions depends on whether they are separated by a distance
d or a − d. We assume nearest neighbor interactions again, and that the force
between two atoms in the same unit cell (separated by a distance d) is stronger.
We write the harmonic potential energy like :

Uharm =
K

2

∑
n

[u1(na)− u2(na)]2 +
G

2

∑
n

[u2(na)− u1([n+ 1]a)]2, (2.12)
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Figure 2.1: Dispersion curve for a mono-atomic linear chain with only nearest-
neighbor interactions.

where u1 and u2 refer respectively to the first and the second ion in the unit
cell, K and G are the spring constants with K ≤ G. The equations of motion
are :

Mü1(na) = − ∂U
harm

∂u1(na)

= −K[u1(na)− u2(na)]−G[u1(na)− u2([n+ 1]a)],

Mü2(na) = − ∂U
harm

∂u2(na)

= −K[u2(na)− u1(na)]−G[u2(na)− u1([n+ 1]a)]

We seek solutions in the form of the following ansatz :

u1(na) = ε1e
i(kna−ωt),

u2(na) = ε2e
i(kna−ωt).

They represent waves with angular frequency ω and wave vector k. ε1 and ε2
are unknown constants yet. Their ratio will determine the relative amplitude
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and phase of the vibration of the ions within the unit cell. As in the mono-
atomic case, the Born-von Karman boundary condition imply that the number
of inequivalent value of k is N . The equations of motion transform to :

[Mω2 − (K +G)]ε1 + (K +Ge−ika)ε2 = 0,

(K +Geika)ε1 + [Mω2 − (K +G)]ε2 = 0.

This system of coupled equations have a solution if its determinant vanishes, ie
:

[Mω2 − (K +G)]2 =
∣∣K +Ge−ika

∣∣2 = K2 +G2 + 2KG cos ka

The solutions of this equations are two positive values of ω that satisfy :

ω2 =
K +G

M
± 1

M

√
K2 +G2 + 2KG cos ka (2.13)

And we obtain the amplitude ratio :

ε2
ε1

= ∓ K +Geika

|K +Geika|
.

Then for each of the N values of k there are two solutions. The total of normal
modes is 2N , one per ion in the unit cell times the number of cells. We plot the
dispersion curves for the two solutions of equation 2.13 in Figure 2.2. The lower
branch is called the acoustic branch and has the same structure as the single
branch in the mono-atomic case. The upper branch is called the optical branch.

We can characterize an acoustic mode as one in which all the atoms in a
unit cell move in phase and the dynamics are dominated by the interaction be-
tween cells. An optical mode is one in which the ions within each unit cell are
moving in a molecular vibratory mode, which is broadened by the intercellular
interactions.

2.3 Density Functional Perturbation Theory

To compute the normal modes of vibration, we use Quantum ESPRESSO
[29] which performs calculations in Density Functional Perturbation Theory
(DFPT). TODO: Try to spend some more work on how it works DFTP

With this we can compute the second derivative of the ground-state energy
E with respect to the displacements of the atoms us :

∂2E

∂usus′
=

∫
∂2V (r)

∂us∂us′
n(r)dr +

∫
∂n(r)

∂us

∂V (r)

∂us′
dr.

In a generic three-dimensional crystal, it has the form of a matrix containing
the interatomic force constants. From there we can solve the secular equation
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Figure 2.2: Dispersion curve for a diatomic linear chain. The orange curve
is the acoustic branch and has the same structure as the single branch in the
mono-atomic case. The blue curve is the optical branch.

which give us the normal mode frequencies ω and the eigenvectors u :∑
s′β

Dsαs′β(q)us′β(q) = ω2
qusα(q)

Where

Dsαs′β(q) =
1√

MsMs′

∑
ν

∂2Etot
∂uµsα∂uνs′β

eiq(Rν−Rµ)

is the dynamical matrix of the crystal.Ms,Ms′ are the masses of atoms s and
s′. µ and ν denote the number of the mode and α and β are two orthogonal
directions. We can diagonalize this matrix to obtain the phonon modes at the
point q.
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Chapter 3

Methods

TODO: write a small introduction on finite-difference methods for electron-
phonon coupling and average of operator, have a look to: Bartomeu Monserrat
2018 J. Phys.: Condens. Matter30 083001

3.1 Average value of an operator at tempera-
ture T=0

Let Â be an operator. Let |ψ0〉 be the fundamental state of the harmonic oscilla-
tor. We want to compute the average of Â ie 〈ψ0|Â|ψ0〉. In space representation
the wave function of the fundamental state is

ψ0(x) =
(mω0

πh̄

)1/4

exp
(
−mω0

2h̄
x2
)
.

Now we have :

〈ψ0|Â|ψ0〉 =
(mω0

πh̄

)1/2
∫ +∞

−∞
dx exp

(
−mω0

2h̄
x2
)
Â(x). (3.1)

In order to compute this integral we expand Â around x = 0 :

Â(x) = Â(0) + x
∂Â

∂x

∣∣∣
x=0

+
1

2
x2 ∂

2Â

∂x2

∣∣∣
x=0

+O(x3) (3.2)

And we plug it in the integral (3.1). The term linear (as all the odd power terms)
in x will vanish because it is multiplied by an even function in the integrand. We
drop the term corresponding to the integration of Â(0) because it is a constant,
and we are left with :

〈ψ0|Â|ψ0〉 =
(mω0

πh̄

)1/2 ∂2Â

∂x2

∣∣∣
x=0

∫ +∞

−∞
dxx2 exp

(
−mω0

2h̄
x2
)

+ ...

=
1

2

h̄

mω0

∂2Â

∂x2

∣∣∣
x=0

11
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Now if we assume the operator is purely quadratic i.e Â = 1
2x

2 ∂2Â
∂x2

∣∣∣
x=0

, then

there exists a value of x∗ for which 〈ψ0|Â|ψ0〉 = Â(x∗), namely :

x∗ = ±
√

h̄

mω0
(3.3)

3.2 Average value of an operator at finite tem-
perature T

In general at finite temperature T , the average of an operator writes :〈
Â(T )

〉
=

1

Z
∑
n

〈En| Â |En〉 e−
En
kBT

where En is the energy associated with the eigenstate |En〉, Z =
∑
n e
− En
kBT is

the partition function and kB is the Boltzmann constant. We will compute the
average for the harmonic oscillator, whose eigenstates of the Hamiltonian are :

ψn(x) =
1√

2nn!

(mω
πh̄

)1/4

e−
mω
2h̄ x

2

Hn

(√
mω

h̄
x

)
where Hn is the Hermite polynomial of order n. The energies associated with
the eigenstates are :

En = h̄ω

(
n+

1

2

)
Using these, the average of operator Â writes :

〈
Â(T )

〉
=

1

Z
∑
n

e
− h̄ω(n+1/2)

kBT
1

2nn!

∫ +∞

−∞
dx

√
mω

πh̄
Â(x)e−

mω
h̄ x2

H2
n

(√
mω

h̄
x

)

We do the change of variable
√

mω
h̄ x = y, so

〈
Â(T )

〉
=

1

Z
∑
n

e
− h̄ω(n+1/2)

kBT

2nn!
√
π

∫ +∞

−∞
dyÂ

(√
h̄

mω
y

)
e−y

2

H2
n(y) (3.4)

We compute it using the same kind of expansion than in (3.2). The operator
assumes the same expansion both in x and y because the relation between the
two variables is linear. Once again we will not keep the term in Â(0) because it
is just a constant. The term linear in y gives the following integral :

∂Â

∂y

∣∣∣
y=0

∫ +∞

−∞
dy yH2

n(y)e−y
2

(3.5)
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We use the following properties of the Hermite polynomials :

yHn(y) =
1

2
Hn+1(y) + nHn−1(y) (3.6)

=⇒ yH2
n(y) =

1

2
Hn+1(y)Hn(y) + nHn−1(y)Hn(y) (3.7)

and ∫ +∞

−∞
dxHn(x)Hm(x)e−x

2

= 2nn!
√
πδn,m (3.8)

Finally the term linear in y of (3.5) vanishes using (3.7) and (3.8). To compute
the term in y2, we use the same property than in (3.7) :

y2H2
n(y) =

1

4
H2
n+1(y) + n2H2

n−1(y) + nHn+1(y)Hn−1(y) (3.9)

The term in y2 in (3.4) becomes, making use of (3.8) and (3.9) :

1

2

∂2Â

∂y2

∣∣∣
y=0

∫ +∞

−∞
dy y2H2

n(y)e−y
2

=
1

2

∂2Â

∂y2

∣∣∣
y=0

√
π2nn!

(
n+

1

2

)
Equation (3.4) becomes :〈

Â(T )
〉

=
1

2

∂2Â

∂y2

∣∣∣
y=0

1

Z
∑
n

e
− h̄ω(n+1/2)

kBT

(
n+

1

2

)
(3.10)

Now we take a look at the partition function Z in the case of the harmonic
oscillator :

1

Z
=

1∑
n e
−
h̄ω(n+ 1

2 )
kBT

= e
h̄ω

2kBT

(
1− e−

h̄ω
kBT

)
,

by properties of the geometric series. The latter also give the result :

∑
n

e
− h̄ω(n+1/2)

kBT

(
n+

1

2

)
= e
− h̄ω

2kBT

 1

2
(

1− e−
h̄ω
kBT

) +
e
− h̄ω
kBT(

1− e−
h̄ω
kBT

)2


If we come back to the original variable x with ∂2Â

∂y2 = h̄
mω

∂2Â
∂x2 , the average of

operator Â is given by :〈
Â(T )

〉
=

h̄

2mω

∂2Â

∂y2

∣∣∣
y=0

(
1

2
+ nB(ω, T )

)
,

where nB(ω, T ) = (eh̄ω/kBT −1)−1 is the Bose-Einstein function. Similarly than

in the previous section, we would like to find a value x∗ for which
〈
Â(T )

〉
=

Â(x∗). If we assume Â to be purely quadratic, i.e Â(x) = 1
2
∂2Â
∂x2

∣∣∣
x=0

, then

x∗(T ) = ±

√
h̄

mω

(
1

2
+ nB(ω, T )

)
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These are two displacements induced by one mode of vibration at a given tem-
perature. Now to compute the average of the operator, we need to displace all
atoms along each vibration mode according to those displacements. Here is the
formula from Zacharias and Giustino [9] that gives the displacement ∆rsa (s
and a indicate the atom and the Cartesian direction, respectively):

∆rsa =

√
h̄

Msων

∑
ν

(−1)ν−1
√

1 + 2nB(ων , T ) εsa,ν , (3.11)

where Ms is the mass of the s-th atom, ων is the pulsation of the ν-th mode
and εsa,ν is the eigenvector associated to this vibration mode. Note the sign
alternates between plus and minus in the sum. This is one possibility chosen
by Zacharias and Giustino. Another choice was made by Monserrat in [8]. His
approach is to average over all the possible sign combinations, which he calls
thermal lines. This is supposed to yield more precise results but is slower to
converge.

3.3 Mapping phonons in a supercell

As seen before, we need to compute the electronic properties by finite displace-
ments in supercells to have more accurate results. However the computation
of phonons in supercell is highly time consuming. Hence we use the follow-
ing method to map phonons computed in a unit cell to supercells. We follow
the notation of Ashcroft-Mermin Chapt. 22 [30] and write the solutions of the
harmonic problem in periodic systems within the Born-von Karman boundary
conditions as:

uµ(q, t) = εµe
i(qR−ωt) (3.12)

where the complex eigenvectors of the dynamical matrix are calculated by
means of DFTP and q is a regular point grid in the first Brillouin zone, and
ωνq are the eigenvalues. The number and the length of the εµ vectors is equal
to 3 · N , where N is the number of atoms in the unit cell. Suppose we have a
regular grid of q-points (nqx, nqy, nqz) for a total of nq = nqx · nqy · nqz. This
mode can be mapped in real-space in a supercell of size (nqx, nqy, nqz). In order
to map the phonons first of all we contruct the new eigenvalues and eigenvectors
ω̃, ε̃. The eigenvalues can be easily constructed as:

ω̃ =


ωq1
ωq2

...
ωqnq


For the eigenvectors we divide the procedure in two steps. First we construct
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eigenvectors without phase correction as:

ε̃µ+q1 =


εµq1

εµq1

...
εµq1

 , ...., ε̃ν+q2 =


ενq2

ενq2

...
ενq2


where the vectors εµq are defined in the unit cell and they have the dimension of
3·N while the vectors ε̃µ are in the supercell and they have dimension (3·N ·nq).
In the unit cell there are 3N eigenvectors for each q-point, while in the supercell
there are 3N · nq for a single q-point, the same number in both cases. Notice
that we have copied the same eigenvector for each of the cell that compose the
supercell. Now we have have to apply the phase factor of Eq. 3.12 as:

ε̃µ+q1 =


εµq1
· eiq1R1

εµq1
· eiq1R2

...
εµq1
· eiq1RN


where the RN are the translation vectors that generate the different cells that
form the supercell, starting from the unit cell. In the part care should be taken
because the order of the cells must be the same for the atomic structure and
polarization vectors. Finally, since there is an arbitrarity in the choice of the
eigenvector phase, we can consider only the real-part of these vectors.

ε̃µ+q1
=


Re
[
εµq1
· eiq1R1

]
Re
[
εµq1
· eiq1R2

]
...

Re
[
εµq1
· eiq1RN

]

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Chapter 4

Results

4.1 Materials

TODO:
1) describe each material BN, phosphorene, Polyacetilene 2) Put band strcture
of the materials, say how much is the gap if it is polar or not etc.. put a figure
for each material 3) describe the optimization of the structure, put the cell you
used to simulate each systems and the optimized atomic positions put the table
with all your results and the different methods

4.2 Gap renormalization

TODO: Put the table you have done with all results and the different methods
you used, then comment the different table and results
We applied these methods to several materials, including polyethylene, hexago-
nal Boron Nitride and a single layer of Phosphorene in α phase, also known
as Black Phosphorus. We performed the phonon calculations in Quantum
ESPRESSO [29] to obtain the eigenmodes of the monolayer with a single unit
cell. After performing a mapping of phonons as described in the previous sec-
tion, we computed the correction of the direct gap due to thermal effects. We
increased the size of the supercells we used and checked for the convergence of
the electronic gap correction.

For materials containing different types of atoms such as polyethylene or
hexagonal Boron Nitride, our method did not converge because of the atoms
having different charges and therefore the optical phonon modes induce long-
range dipole forces that require very large supercells to converge [31]. Moreover
for the particular case of hBN, Monserrat et al. stated that we would need a
32x32x32 supercell to reach convergence, which is virtually impossible for us
[32]. Fig. 4.1 is the example of polyethylene, where we see that there is no
convergence within the range of supercell sizes we use.

The example of black phosphorus is displayed in Fig. 4.2. We can see that

17
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Figure 4.1: Example of polyethylene. Correction to the gap with respect to the
size of the supercell. Since polyethylene is a linear chain, the supercells are just
a given number of juxtaposed unit cells.

unlike the previous example convergence can be reached for Black-Phososhorous.
This is due to the fact that BP is not a polar material and there are no long-
range forces.Unfortunately, we found that the correction to the gap in the two-
dimensional BP, that is already small in the bulk [24], goes to zero for large
supercells.



4.2. GAP RENORMALIZATION 19

Figure 4.2: Example of black phosphorus. Correction to the gap with respect
to the size of the supercell. The supercells are squares of a given number of unit
cells.
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Chapter 5

Conclusion

In this work I presented the derivation of the method used in our calculations :
the fact that a physical quantity at temperature T can be obtained by the ther-
mal average of the corresponding operator on particular atomic configurations
at that temperature. We computed the thermal averages by finite displacement
differences. We used different supercell sizes to check for convergence of the
results, and we developped a method to map phonons computed in a unit cell
to any supercell, reducing the time cost of the calculations.

We applied the method to several materials and we saw a convergence of the
correction to electronic gap in the case of black phosphorus.

Future work would be to tune the method to obtain significant results for
polar materials, as well as accounting for excitonic effects alongside thermal
effects in the correction of physical quantities.

Due to the COVID-19 crisis and the quarantine in France, the internship I
made to work on this project was only six weeks long and I had to work from
home which made progress more difficult.
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