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Overview

• Properties of matter naturally fall into two main categories determined , respectively, by the 
electronic ground state and the electronic excited states

• Electronic ground state determines equilibrium properties such as:

cohesive energy, equilibrium crystal structure, phase transitions between structures, elastic 
constants, charge density, magnetic order, static dielectric and magnetic susceptibilities, 
nuclear vibration and motion, etc.

• Electronic excited states determine properties such:

low-energy excitations in metals, optical properties, transport, etc.

• In our overview of electronic structure methods we will focus mostly on the basic principles 
underlying the density functional theory, in particular, Kohn-Sham equations, exchange-
correlation functional, approximations, plane-waves, and pseudo-potentials   



The many-body problem
• How do we solve for the electronic ground state? Solve a many-body problem: the study 

of the effects of interaction between bodies, and the behavior of a many-body system

• The collection of nuclei and electrons in a piece of a material is a formidable many-body 
problem, because of the intricate motion of the particles in the many-body system:

• Electronic structure methods deal with solving this formidable problem starting from 
the fundamental equation for a system of electrons ({ri}) and nuclei ({RI})
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The many-body problem
• Electronic terms:

• Nuclear terms:

• Electrons are fast (small mass, 10-31 Kg) - nuclei are slow (heavy mass, 10-27 Kg) ➔
natural separation of variables

• In the expression above we can ignore the kinetic energy of the nuclei, since it is a small 
term, given the inverse mass of the nuclei

• If we omit this term then the nuclei are just a fixed potential (sum of point charges 
potentials) acting on the electrons: this is called the Born-Oppenheimer approximation
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Kohn and Sham ansatz

• H-K theory is in principle exact (there are no approximations, only two elegant theorems) but 
impractical for any useful purposes

• Kohn-Sham ansatz: replace a problem with another, that is the original many-body problem 
with an auxiliary independent-particle model

• Ansatz: K-S assume that the ground state density of the original interacting system is equal to 
that of some chosen non-interacting system that is exactly soluble, with all the difficult part 
(exchange and correlation) included in some approximate functional of the density.

• Key assumptions:

– The exact ground state density can be represented by the ground state density of an 
auxiliary system of non-interacting particles. This is called “non-interacting-V-
representability”;

– The auxiliary Hamiltonian contains the usual kinetic energy term and a local effective 
potential acting on the electrons

• Actual calculations are performed on this auxiliary Hamiltonian

through the solution of the corresponding Schrödinger equation for N independent electrons 
(Kohn-Sham equations)
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Kohn and Sham ansatz

• The density of this auxiliary system is then:

• The kinetic energy is the one for the independent particle system:

• We define the classic electronic Coulomb energy (Hartree energy) as usual:
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Kohn and Sham equations
• Finally, we can rewrite the full H-K functional as

• All many body effects of exchange and correlation are included in Exc

• So far the theory is still exact, provided we can find an “exact” expression for the 
exchange and correlation term

• If the universal functional Exc[n] were known, then the exact ground state energy and 
density of the many-body electron problem could be found by solving the Kohn-Sham 
equations for independent particles.

• To the extent that an approximate form for Exc[n] describes the true exchange-
correlation energy, the Kohn-Sham method provides a feasible approach to calculating 
the ground state properties of the many-body electron system.
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Kohn and Sham equations

• The solution of the Kohn-Sham auxiliary system for the ground state can be viewed as 
the problem of minimization with respect to the density n(r) that can be done varying 
the wavefunctions and applying the chain rule to derive the variational equations:

subject to the orthonormalization constraint

• Since

• One ends up with a set of Schrödinger-like equations

where HKS is the effective Hamiltonian

with



Kohn and Sham equations

• The previous result, trivial in the non-interacting case, raises interesting issues in the KS case

• Given the expression for the exchange and correlation energy, one can derive the expression 
for the exchange and correlation potential Vxc

• It can be shown that the response part of the potential (the derivative of the energy wrt the 
density) can vary discontinuously between states giving rise to discontinuous jumps in the 
eigenvalues: “band-gap discontinuity”

• Critical problem of the gap in an insulator: the eigenvalues of the ground state Kohn-Sham 
potential should not be the correct gap, at least in principle.

• Indeed, it is well known that most known KS functionals underestimate the gap of insulators, 
however, this is an active field of research and new developments are always possible.

𝐸𝑥𝑐 𝑛 = න𝑑𝑟𝑛(𝑟)𝜀𝑥𝑐([𝑛], 𝑟)

𝑉𝑥𝑐(𝑟) =
𝜕𝐸𝑥𝑐[𝑛]

𝜕𝑛(𝑟)
= 𝜀𝑥𝑐 𝑛 , 𝑟 + 𝑛(𝑟)

𝛿𝜀𝑥𝑐([𝑛], 𝑟)
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Approximations:
Local Density Approximation

• Although it might seem counterintuitive, solids can be often considered as close to the limit 
of the homogeneous electron gas = electron gas immersed in a uniformly positive charge 
background (true for metals, increasingly less true for very inhomogeneous charge 
distributions such as in nanostructures and isolated molecules)

• In this limit it is known that exchange and correlation (x-c) effects are local in character and 
the x-c energy is simply the integral of the x-c energy density at each point in space assumed 
to be the same as a homogeneous electron gas with that density

• Generalizing to the case of electrons with spin (spin-polarized or unrestricted), we can 
introduce the Local Spin Density Approximation (LSDA)

• Most general local expression for the exchange and correlation energy

• Ultimately, the validity of LDA or LSDA approximations lies in the remarkably good agreement 
with experimental values of the ground state properties for most materials

• Can be easily improved upon without loosing much of the computational appeal of a local 
form

• Ignore corrections to the exchange-correlation energy at a point r due to nearby 
inhomogeneities in the electron density
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Local Density Approximation

• Problem of self-interactions: in the Hartree-Fock approximation the unphysical self term
in the Hartree interaction (the interaction of an electron with itself) is exactly cancelled
by the non-local exchange interaction.

• In the local approximation to exchange, the cancellation is only approximate and there
remain spurious self-interaction terms that are negligible in the homogeneous gas but
large in confined system such as atoms (need of Self-Interaction Corrections or SIC)

• A non exhaustive list of such drawbacks follows: the LDA tends to overbind (i.e.
the computed cohesive energies are too large). The electrons are not localised
enough in space; indeed, the LDA is a generalization of the HEG, which is
appropriate for some s and p electrons, but not for d and f orbitals.

• However, in most known cases LSDA works remarkably well, due to the lucky occurrence
that the exchange and correlation hole, although approximate, still satisfies all the sum
rules.



Generalized Gradient Approximations
• The first step beyond the L(S)DA approximation is a functional that depends both on the 

magnitude of the density n(r) and of its gradient |n(r)|: Generalized Gradient 
Approximations (GGA’s) where higher order gradients are used in the expansion:

where Fxc is a dimensionless function and εx
hom is the exchange energy of the uniform 

electron gas.

• Gradients are difficult to work with and often can lead to worse results. There are 
however consistent ways to improve upon L(S)DA using gradient expansions

• Most common forms differ by the choice of the F function: 

PW91, PBE, BLYP,…



Beyond GGA
• Non-local density functionals: functionals that depends on the value of the density around 

the point r (Average Density and Weighted Density Approximations)

where 

• Orbital dependent functionals: mostly useful for systems where electrons tend to be 
localized and strongly interacting

– SIC - self-interaction corrected functionals

– LDA+U - local functional + orbital-dependent interaction for highly localized atomic 
orbitals (Hubbard U)

– EXX (exact exchange) - functionals that include explicitly the exact exchange integral of 
Hartree-Fock

– Hybrid functionals (B3LYP) - combination of orbital-dependent Hartree-Fock and 
explicit DFT. Most accurate functional on the market - most preferred for chemistry 
calculations



DFT in Practice

• Finally, the set of K-S equations with LDA for 
exchange and correlation give us a formidable 
theoretical tool to study ground state properties 
of electronic systems

• Set of self-consistent equations that have to be 
solved simultaneously until convergence is 
achieved

• Note: K-S eigenvalues and energies are 
interpreted as true electronic wavefunction and 
electronic energies (electronic states in molecules 
or bands in solids)

• Note: K-S theory is a ground-state theory and as 
such is supposed to work well for ground state 
properties or small perturbations upon them

• Extremely successful in predicting materials 
properties - golden standard in research and 
industry 
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Plane-Wave: Basis Sets

System is assumed to be placed inside a unit cell defined 

by the unit vectors 



n1,n2 ,n3 = integersR = n1a1 + n2a2 + n3a3,

r → r + R
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R

Periodic Boundaries

Plane-Wave: Basis Sets



→ →Since the system is periodic, our plane-wave
expansion must consist of only the plane-waves eiGr

that have the periodicity of the lattice,

We can determine these plane-waves from the 

following constraint

Plane-wave Expansion

Plane-Wave: Basis Sets



It is easy to show from the periodicity constraint that 

the wave-vectors can be defined in terms of the 

following reciprocal lattice vectors

Reciprocal lattice vectors

Wave-vectors that satisfy the periodicity of the lattice

Plane-Wave: Basis Sets



The upper-limits of the summation (N1,N2,N3) control the 

spacing of the real-space grid

The exact form of the plane-wave expansion used in plane-

wave code is

Plane-Wave: Basis Sets



There is a further truncation of plane wave expansion in plane-

wave calculations. Namely, only the reciprocal lattice vectors 

whose kinetic energy lower than a predefined maximum cutoff 

energy,

are kept in the expansion, while the rest of the coefficients are set

to zero. Besides reducing the computational load, this truncation

strategy limits the effects of unit cell orientation on the outcome of

the calculation.

Wavefunction Cutoff Energy

Plane-Wave: Basis Sets



The pseudopotential method is based on two observations.

First, in almost any system one could identify a set of the so-called core

orbitals which change little from their atomic counterparts.

Second, the remainder, the so-called valence orbitals, acquire their

oscillating behavior mainly due to Pauli exclusion principle or, in plain

words, orthogonality constraints to the core orbitals.

In pseudopotential approximation the original atoms that constitute a

given chemical system are modified by removing core energy levels and

enforcing the Pauli exclusion principle via repulsive pseudopotential. This

removes the wiggles from the atomic valence orbitals and allows efficient

application of plane wave basis set expansion. The resulting pseudoatoms

will in general acquire a nonlocal potential term.

21

Pseudopotentials



Pseudopotentials

• The core electrons of an atom are computationally expensive 
with planewave basis sets
– Large number of planewaves are required to expand their 

wavefunctions
– Contributions of core electrons versus valence electrons to 

bonding is usually negligible
• To address this, we replace the atomic potential due the to 

core electrons with a pseudopotential which has the same 
effect on valence electrons:  (see also “Efficient 
pseudopotentials for plane-wave calculations by Troullier and 
Martins:
– https://journals.aps.org/prb/abstract/10.1103/PhysRevB.4

3.1993)

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.43.1993
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.43.1993
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