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Introduction

“The many–body problem has attracted attention since

the philosophers of old speculated over the question of

how many angels could dance on the head of a pin.”

Richard D. Mattuck

As in the “angel” problem, solid state physics has to face two problems in describ-

ing the physics of matter. First of all there are many “angels” (electrons, atoms,

molecules. . . ). Secondly, for to be a problem, these bodies interact one with each

other. As a consequence, for example, all the electrons of a solid reacts together to

an external perturbance to restore the initial equilibrium.

The importance of the many–body problem derives from the fact that almost any

real physical system one can think of is composed of a set of interacting particles.

Furthermore, it turns out that in the calculation of physical properties of such

system – for example, the energy levels or the dielectric constant – interactions

between particles play a very important role.

The subject of this thesis is to study, with the use of modern many–body tech-

niques, the electronic and optical properties of two noble metals: copper and silver.

We are dealing with a peculiar kind of metals: those containing spatially local-

ized d–character orbitals underlying the (broader) s/p states. Therefore attempting

to apply all the fundamentals of many–body theory developed in the 1950s 1 to

describe the homogeneous electron gas, one could inquire about the role played by

these localized atomic orbitals. Neglecting this role (because of their localization

that could avoid any participation in the electronic reactions) the metallic screening

should prevail, leading to an interpretation of the systems as composed of nearly

non–interacting electrons.

Moreover copper and silver are noble metals. This means that the d–shell is

completely full, so that no electron–hole excitations within the d–shell are possi-

1D. Pines, The Many–Body problem,Addison Wesley 1961,1997
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ble. Consequently a simple s/p–metal behavior could follow and we could expect a

mean–field theory (such as Density Functional theory) to work properly, describing

correctly the experimental results.

As we will see in the forthcoming chapters the assumption of d–states not par-

ticipating in the electronic and optical properties of the medium is far from being

true. d–orbitals will play a key role in all the calculations presented here and the

aim of this thesis is to develop a theoretical framework that is able to reproduce

correctly the experimental results.

In the Chapter 1 the general theoretical framework of linear response theory,

Density Functional Theory and many–body approach is introduced. It does not

intend to be exhaustive; merely functional for the description of the experimental

quantities calculated in the forthcoming chapters.

In Chapter 2 an accurate, first–principles study of the electronic structure and

absorption spectrum of bulk copper within Density Functional Theory in the Lo-

cal Density Approximation is presented. The plane wave basis used to expand the

Bloch wavefunction requires the use of pseudopotentials. It will be shown that

norm–conserving pseudopotentials can be used to work at full convergence with a

relatively small plane–wave basis. However, we will see that these pseudopotentials

are strongly dependent from the angular momentum, with a steep d–component

that, if not correctly included in momentum matrix elements, yields macroscop-

ically wrong results in the absorption spectrum in that many optical transitions

in the energy range 1.8, 5.0 eV are strongly suppressed. We will see that the cor-

rect definition of momentum matrix elements enhance the optical transition from

d–bands to s/p–bands, yielding a good agreement with experimental data. We will

find, however, an overestimation (of ∼ 20%) of the absorption spectrum. I will show

that this is not due to the pseudopotential approach via a series of calculations using

different pseudopotentials including also the deep core levels in the atomic valence.

The Density Functional band structure is compared with experimental photoe-

mission, finding discrepancies that are distinctly band- and k-dependent. In a re-

cent work 2 very–low–energy electron diffraction (VLEED) is used to measure the

band structure of copper. The authors, looking at the discrepancies found between

Density Functional Theory calculations and experimental results, state that it is

intriguing to find such pronounced “deviations from the band theory”, copper being

“a prototype weakly correlated system”. In Chapter 3, I show that these two state-

2V.N. Strocov et al, Phys. Rev. Lett. 81, 4943 (1998).
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ments of the experimentalists about the deviations from band theory and the weak

correlation in copper are not completely true. It is true that copper deviates from

Density Functional band theory I will show, infact that Many–Body quasiparticle

band theory turns out to be in excellent agreement with experimental results.

Moreover, copper turns out to be a far from weakly correlated system, as cor-

relation energies of ∼ 10 eV are found. Again this is due to correlations among

the very localized d–orbitals. Only by including properly the deep 3s/3p core levels

do we obtain physical results as the bare exchange with d–orbitals turns out to be

responsible for contributions of the order of 10 eV .

The Many–Body calculation is done within the GW approximation for the self–

energy operator that, although exact in the homogeneous electron gas for high den-

sities, is able to correctly describe the screening effects also at the metallic regime

and, more importantly, in the presence of localized, atomic like, orbitals. The strong

correlation effects, however, indicate that the screening in copper is not as effective

as in simple metals and, again, the role played by d–orbitals is crucial in reproducing

the experimental results.

Density functional theory is mathematically represented by an hermitian hamil-

tonian, so that the corresponding single particle states have infinite lifetime. How-

ever, experimentally, holes created by means of photoemission are detected with an

intrinsic energy width, which corresponds to an energy indetermination due to a

finite lifetime. Following the excellent GW band structure obtained in Chapter 3, I

have used the same theoretical method to calculate the lifetime of d–holes in copper.

The results found compare well with recent experimental results, improving the

agreement with respect to the state–of–the–art approaches. These neglect the self–

energy corrections in the band structure, as well as the transfer of weight from the

quasiparticle peak to higher energy regions of the spectra. Although the good re-

sults found, the “well–done” GW is shown to contain decay channels involving the

same renormalized and unrenormalized d–levels. In Chapter 4 these (apparently

nonphysical) events are discussed and motivated in the spirit of non selfconsistent

GW . Some calculations beyond the non selfconsistent approach are proposed, show-

ing that, similarly to the band structure, at self–consistency results are expected to

worsen.

The last chapter of this thesis (Chapter 5) is devoted to a well–known drawback

of Density Functional Theory: the plasmon resonance of silver observed in electron

energy loss spectra as a sharp peak just below the interband threshold, and in the
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reflectivity as a deep minimum 3. Using Density Functional Theory the plasmon

peak is only poorly reproduced, with an underestimation of the position and of the

intensity of the resonance.

This is more surprising if compared with copper, semiconductors or simple metals

where the independent particle approximation correctly reproduces the experimental

spectra. I will present the first Ab–Initio GW calculation of the optical properties

of silver with the correct threshold behavior and, consequently, the correct plasmon

resonance. Electron energy loss spectra as well as reflectivity turn out to be in excel-

lent agreement with experiment. This result is discussed and interpreted coherently

with the results obtained for copper, silicon and simple metals.

For the first time the damping mechanism of the plasmon is proved theoretically,

by means of the non trivial self–energy corrections found in silver. In agreement with

several experiments on silver alloys, I show that GW shifts optical transitions near

the L–point to below the main absorption threshold giving the finite width to the

plasmon resonance.

3F. Wooten, Optical Properties of solids, Academic Press, NY 1972
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Chapter 1

Single particle approach and

many–body corrections to the

electronic excitations of solids

A physical system is constituted of a set of N electrons interacting by means of

Coulomb interaction. Furthermore each electron interacts with the ionic potential

and and the distribution of the atomic positions characterizes the configuration of

the system. In this thesis we will study bulk solids, for which the atomic distribution

is assumed ordered and periodic.

But this is the system at rest. Our knowledge of its electronic structure is ex-

pressed in the theoretical reproduction of some observable measured in experiments.

The aim of this first chapter is to present the observable measured in optical exper-

iments and the theoretical general tools use to interpret the results.

The physics of an interacting electronic system perturbed by an external distur-

bance can be described writing the hamiltonian like

Htot = Hsolid +Hext (1.1)

where Htot is the total hamiltonian, Hsolid is the interacting hamiltonian of the

system at rest and Hext is the external perturbation (in our case the electromagnetic

field).

In Section 1.1 we will introduce the observable defined within linear response

theory, where all the physical quantities are expanded at the first order in Hext. In

Section 1.2 and 1.3 we will summarize the state–of–the–art theory used to calculate

excited states of Hsolid.

Indeed, although the system is initially at rest, Hext projects its ground state

1



on a new set of infinite excited states. Unfortunately the calculation of these ex-

cited states by simply solving the equation of motion for Hsolid is impossible and

perturbation theory must be used.

1.1 Optical properties and plasma effects

In discussing the response of a solid to an external electromagnetic field some gen-

eral relations between the transport coefficients and the optical and energy loss

spectra of the medium can be extracted. As is well known, two constants, the index

of refraction and the extinction coefficient completely describe the optical proper-

ties of a system. In the case of electron energy loss spectra, one is interested on

losses amounting to tens of volts compared to the incident–electron energies lying

in the kilovolt range. It should be emphasized that the two external disturbances

in question correspond respectively to transverse field and longitudinal fields. The

transverse field is perpendicular to the direction of propagation, whereas the longi-

tudinal field is parallel.

The frequency and wave number dependent dielectric function ε (q, ω), and its

inverse, the so called dielectric response function ε−1 (q, ω), represent the most nat-

ural quantities from a theoretical point of view for the description of the elementary

excitations of the system produced by photons or fast electrons.

In this section, following the approach of Ehrenreich [1], we will introduce a

general theoretical framework of the interaction of a fully interacting solid with an

external electromagnetic field, imposing gauge–invariant to all the physical quan-

tities. We will see that this requirement leads to important relations and useful

sum–rules that can be quantitatively compared with the experiment.

As usual, one begins with the hamiltonian for an N–body system

H =
N∑

i=1

{

1/2
[
pi − Aext (ri, t)

]2
+ V (ri) + φext (ri, t)

}

+Hcoul, (1.2)

written in atomic units. Eq. (1.2) involves the coordinates and momenta ri and

pi of particle i, an external vector potential Aext (ri, t), an external scalar poten-

tial φext (ri, t), a single–particle periodic potential V (ri) and the residual Coulomb

2



interaction Hcoul. The total hamiltonian cam be written as

H = Hsolid +Hext (t) , (1.3)

Hsolid = H0 +Hcoul =
∑

i

(
p2

i + V (ri)
)

+Hcoul, (1.4)

Hext (t) = −1/2
∑

i

[
pi/2A

ext (ri, t) + Aext (ri, t)pi + φext (ri, t)
]
. (1.5)

The term A2 has been neglected in this linear treatment of the response to the

external fields. Hext can be rewritten as

Hext (t) = −
∫

dr j (r) · Aext (r, t) +

∫

dr ρ (r)φext (r, t) , (1.6)

with

j (r) = 1/2
∑

i

[piδ (r − ri) + δ (r − ri)pi] , (1.7)

ρ (r) =
∑

i

δ (r − ri) ; (1.8)

introducing the current and charge operators. The first consequence of the presence

of an external perturbation is the change in the electronic state of the solid: if |Ψ〉
is the ground state of Hsolid representing the status of the system at t = −∞ at first

order perturbation expansion |Ψ〉 will evolve in |Ψ (t)〉 given by

|Ψ (t)〉 ≈ |Ψ〉 + i

∫ t

−∞

dt′Hext
I (t′) |Ψ〉, (1.9)

and all the physical quantities are affected by this dynamics. In Eq. (1.9) H ext
I (t)

is represented in the interaction representation respect to Hsolid. So the induced

current, defined as

jind (r, t) ≡ 〈Ψ (t) |j (r) − ρ (r)Aext (r, t) |Ψ (t)〉
= 〈ΨI (t) |jI (r, t) − ρI (r, t)Aext (r, t) |ΨI (t)〉, (1.10)

using Eq. (1.9) becomes

jind (r, t) = −n (r)Aext (r, t) − i

∫ t

−∞

〈
[
jI (r, t′) , Hext

I (r, t′)
]
〉 dt′; (1.11)

where the averages are made on the ground state |Ψ〉, n (r) = 〈Ψ|ρ (r) |Ψ〉 and we

have used the important consequence of our definition of current, Eq. (1.7)

〈Ψ|j (r) |Ψ〉 = 0, (1.12)

3



due to the absence of any charge–current in the unperturbed ground state. In the

next chapter we will see that in presence of a non–local potential Eq. (1.12) would

give a non vanishing charge–current if the definition given in Eq. (1.7) is not modified.

After substituting the explicit expression for H ext we obtain

jind (r, t) = −〈ρ〉Aext (r, t) + i

∫ t

−∞

dt′
∫

dr′ χc
jj (rr′, t− t′) · Aext (r′, t′)

− i

∫ t

−∞

dt′
∫

dr′ χc
jρ (rr′, t− t′)φext (r′, t′) , (1.13)

where the absorpitive response functions are introduced

χc
jj (rr′, t− t′) ≡ 1

2
〈[jI (r, t) , jI (r, t′)]〉, (1.14)

χc
jρ (rr′, t− t′) ≡ 1

2
〈[jI (r, t) , ρI (r, t′)]〉, (1.14′)

χc
ρρ (rr′, t− t′) ≡ 1

2
〈[ρI (r, t) , ρI (r, t′)]〉. (1.14

′′

)

Before going on it should be noted that these expressions explicitly include the

causal nature of the time evolution of the system: in Eq. (1.13) the response of the

system at time t due to an external field occurs at times later than those at which

the field acts.

Now we define the complex response functions that, linked to the retarded

Green’s functions, will be suitable for diagrammatic many–body expansion:

χjj (rr′, t) ≡ 2iθ (t)χc
jj (rr′, t) (1.15)

so that jind (r, t) can be rewritten as

jind (r, t) = −n (r)Aext (r, t) +

∫∫ ∞

−∞

dr′ dt′ χjj (rr′, t− t′) · Aext (r′, t′)

−
∫∫ ∞

−∞

dr′ dt′ χjρ (rr′, t− t′)φext (r′, t′) . (1.16)

In exactly the same way the induced charge

ρind (r, t) =

∫∫ ∞

−∞

dr′ dt′ χρj (rr′, t− t′) · Aext (r′, t′)

−
∫∫ ∞

−∞

dr′ dt′ χρρ (rr′, t− t′)φext (r′, t′) , (1.17)

can be obtained to first order. The general tensor character of the current–current

commutator should be noted. The present treatment, however, will be specialized

to cubic crystals (like Cu and Ag) for which this quantity is a scalar.

4



Eq. (1.16–1.17) are the main result of this first general part of the approach to

the linear response theory. However we have introduced three correlation functions

(current–current, current–charge and charge–charge), that complicate considerably

the practical implementation to real systems. At this point is fundamental to in-

troduce the requirement of gauge–invariance of the theory in order to reduce the

theoretical quantities introduced. We recall that if new potentials φext (r, t) and

Aext (r, t) are introduced so that

φext (r, t) = φext (r, t) − ∂

∂t

Λ (r, t) , (1.18)

Aext (r, t) = Aext (r, t) − ∂

∂r

Λ (r, t) , (1.19)

where Λ (r, t) is an arbitrary scalar function, the observable quantities such as jind

and ρind must remain unchanged. This property permits the deduction of some

useful relations. Since we are dealing here with linear response we can freely as-

sume the external field to be monochromatic (moreover such a field conforms the

experimental conditions in the optical case). As consequence

Aext (r, t) = Aext (r, ω) ei(q·r−ωt), (1.20)

and imposing, first, that

jind (r, t)
∣
∣
Λ(r,t)=0

= jind (r, t)
∣
∣
Λ(r,t) 6=0

, (1.21)

we get the conditions

∂

∂r′
· χ′′

jj (rr′, ω) = −iωχ′′

jρ (rr′, ω) , (1.22)

2i χ
′′

jρ (rr′, t)
∣
∣
∣
t=0

= n (r)
∂

∂r′
δ (r − r′) ; (1.22

′

)

where χ
′

and χ
′′

are the real and imaginary part of χ. Similarly, a relation between

χ
′′

jρ and χ
′′

ρρ can be established by making a gauge transformation on the expression

for ρind

∂

∂r′
· χ′′

ρρ (rr′, ω) = −iωχ′′

ρρ (rr′, ω) . (1.23)

Using these three relations two important relations can be obtained: the first is the

longitudinal sum rule

n (r)
∂

∂r′
δ (r − r′) =

1

π

∂

∂r′

∫
dω′

ω′
χ

′′

jj (rr′, ω) , (1.24)

5



while the second is the expansion of jind (r, ω) in terms of the external electric field

jind (r, ω) = −iω
∫

dr α̃ (rr′, ω)Eext (r′, ω) , (1.25)

with

Eext (r, ω) ≡ ∂

∂r

φext (r, ω) + iωAext (r, ω) , (1.26)

α̃ (rr′, ω) ≡ 1

ω2
[χjj (rr′, ω) − n (r) δ (r − r′)] ; (1.27)

where α̃ (rr′, ω) is the quasi–susceptibility. It should be remembered that the true

susceptibility α (rr′, ω) involves the total field Etot (r, ω).

1.1.1 Macroscopic averages and Local Field effects

The kinds of longitudinal and transverse disturbances that are being dealt with are

such that the external fields are slowly varying over the unit cell. More precisely

the wavelength λ = 2π/|q| is such that λ ¿ Ω1/3, where Ω is the unit cell volume

of the crystal lattice.

In this regime the link between microscopic and Maxwell equations is obtained

regarding the cell position R as continuous coordinates. To achieve this we start

writing the slowly varying external field as

Eext (r, ω) = Eext (q, ω) eiq·r. (1.28)

Fourier transforming the jind (r, ω) and α̃ (rr′, ω) functions

jind (r, ω) =
∑

q

jind (r,q, ω) eiq·r, (1.29)

α̃ (rr′, ω) =
∑

q

α̃ (rr′,q, ω) eiq·(r−r′), (1.29′)

where the residual dependence of j (r,q, ω) and α̃ (rr′,q, ω) from (r, r′) is due to the

lack of continuous translation invariance of the crystal. Using Eq. (1.29’) Eq. (1.25)

can be rewritten as

jind (r, ω) = −iω
∫

dr′ 1/ (2π)

∫

dq′ α̃ (rr′,q′ω) eiq·(r−r′)Eext (q, ω) eiq·r′

= −iωeiq·r′
∫

dq′

2π

[∫

dr′ α̃ (rr′,q′ω) eiq·(r−r′)Eext (q, ω)

]

≈ −iωeiq·r

∫
dq′

2π
Ω
∑

R

eiR·(q−q′)

[∫

0

dr′

Ω
α̃ (rr′,q′ω)Eext (q, ω)

]

, (1.30)
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where we have used the fact that the external electric field is slowly varying in the

unit cell. Finally we obtain that

jind (r, ω) = −iω〈α̃ (rr′,q′ω)〉0Eext (q′, ω) , (1.31)

〈α̃ (rr′,q′ω)〉0 ≡
∫

0

dr′

Ω
α̃ (rr′,q′ω) , (1.32)

and only the q component is seen to remain. Now, using Eq. (1.31), we can finally

pass to the macroscopic coordinates. Because of the lattice periodicity

〈jind (r, ω)〉R ≡
∫

R

dr′

Ω
jind (r, ω) = 〈jind (r, ω)〉0, (1.33)

so that

〈jind (r, ω)〉0 =

∫

R

dr′

Ω

∑

K

jind (q + K, ω) eiK·r = jind (q + 0, ω) ; (1.34)

where K is a reciprocal lattice vector. Analogously

〈〈α̃ (rr′, ω)〉〉0 ≡ 〈
∫

0

dr′

Ω
α̃ (rr′,q′ω)〉R

=

∫∫
rr′

Ω2

∑

K,K′

α̃ (q + K,q + K′, ω) eiK·re−iK′·r′ = α̃ (q + 0,q + 0, ω) ≡ α̃ (q, ω) .

(1.35)

Thus we obtain the form

jind (q, ω) = −iωα̃ (q, ω)Eext (q, ω) , (1.36)

whose appearance is now the same as in the translationally invariant case. It must be

emphasized that the average procedure obtained so far is not valid for the response

of the system to the total electric field.

To clarify better this point we need to introduce the more conventional suscep-

tibilities and dielectric constants, starting from the Maxwell equations:

∇ · Eext = 4πρext, ∇× Etot = −∂B
∂t
, (1.37)

∇ · B = 0, ∇× Btot =
∂Etot

∂t
+ 4πjtot, (1.37′)

where the total charge and current are expressed in terms of the external and induced

quantities

jtot = jext + jind, ρtot = ρext + ρind. (1.38)

7



These equations are obtained from the microscopic ones by means of averages such

as introduced before, where the coordinates appearing in Eq. (1.37) are the cell

positions R

〈E (r, ω)〉R = E (R, ω) , (1.39)

and similar relations define the “macroscopic” derivative. We may now define the

microscopic frequency dependent longitudinal dielectric constant εL (rr′, ω)

∇ ·
∫

dr′ εL (rr′, ω)Etot (r′, ω) = 4πρext (r, ω) , (1.40)

that, together with the relationship

∇ · Eext (r, ω) = 4πρext (r, ω) , (1.41)

implies
∫

dr′ εL (rr′, ω)Etot (r′, ω) = Eext (r, ω) + ∇× F (r, ω) ; (1.42)

where F (r′, ω) is an arbitrary vector. Since, as pointed out before, average of

response functions are mostly readily obtained when they multiply the much slowly

varying external fields, it is convenient to consider the inverse dielectric function

ε−1 (r′, ω), defined as

Etot (r′, ω) =

∫

dr′ ε−1 (r′, ω)
[
Eext (r′, ω) + ∇× F (r′, ω)

]
, (1.43)

so that, since for cubic crystals 〈ε−1∇× F 〉0 = 0, we find

Etot (q, ω) = ε−1
L (q, ω)Eext (q, ω) =⇒ εL (q, ω) = 〈〈ε−1

L (rr′, ω)〉〉−1
0 . (1.44)

This is an important result showing that, generally

εL (q, ω) 6= 〈〈εL (rr′, ω)〉〉0. (1.45)

The difference between Eq. (1.44) and Eq. (1.45) is due to the so–called Local Field

Effects, linked to the absence of the continuous translation invariance present in the

homogeneous electron gas.

At this point it may be worth–while to digress briefly in order to consider the

condition for plasma oscillation in the solid imposed by Eq. (1.44). Since the plasmon

corresponds to a collective excitation of the electrons in the system, which, as a

normal mode must persist, it is possible to have a non–vanishing induced current
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and hence a total field inside the system without the presence of an external field.

From Eq. (1.44) it is seen that this implies

εL (q, ωp (q)) = Re [εL (q, ωp (q))] + i Im [εL (q, ωp (q))] = 0, (1.46)

where ωp (q) is the plasma frequency. In practice, a well-defined plasma oscillations

can be observed if Re [εL (q, ωp (q))] = 0 and Im [εL (q, ωp (q))] ¿ 1. The latter

condition, as we will see in the case of Ag, implies that although non vanishing, the

damping of the plasmon is small.

Returning now to the main development, Maxwell equations allow to obtain the

relations between εL (q, ω), α̃ (q, ω) and the true polarizability α (q, ω) defined as

jind (q, ω) = iωαL (q, ω)Etot (q, ω) . (1.47)

These relations are:

αL (q, ω) =
εL (q, ω) − 1

4π
, (1.48)

ε−1
L (q, ω) = 1 − 4πα̃ (q, ω) . (1.49)

Regarding the transverse disturbance, for which ∇ · Etot = 0, the definition of

εT (q, ω) is now linked to the relation between the total electric field and the external

current (not the charge like in the longitudinal case), but the important result is

that in the long–wavelength limit q → 0

ε−1
T (0, ω) = 1 − 4πα̃ (0, ω) =⇒ εL (0, ω) = εT (0, ω) , (1.50)

that is, for cubic crystals the longitudinal and transverse dielectric constants are

equal in the long–wavelength limit [1]. It is this result which implies that optical

and electron energy–loss experiments, which corresponds respectively to transverse

and longitudinal disturbances, yield identical information concerning the elementary

excitations at q = 0.

1.1.2 Sum rules for ε and ε−1

Having defined the longitudinal and transverse dielectric constants, it is now desir-

able to express the previous derived longitudinal sum rule in terms of ε and ε−1. We

shall now restrict our attention exclusively to the q → 0 limit where

ε−1 (ω) = ε−1
L (ω) = 1 − 4πα̃ (ω) . (1.51)
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The averaged form of Eq. (1.27) is

α̃ (ω) = 1/ω2 [χjj (ω) − nel] , (1.52)

while the averaged longitudinal sum rule is

1

π

∫ ∞

−∞

dω′

ω′
χ

′′

jj (ω′) = nel =⇒
∫ ∞

0

dω′ ω′Im
[
ε−1 (ω′)

]
= −π

2
ω2

p; (1.53)

with ω2
p = 4πnel and nel = Ω−1

∫
drn (r). The corresponding result for ε (ω) follows

from its analytical properties and asymptotic behavior
∫ ∞

0

dω′ ω′Im [ε (ω′)] =
π

2
ω2

p. (1.54)

1.1.3 Energy loss of external fields and charges

A last step is necessary to link the optical functions defined so far to the experimental

quantities. The rate at which an external field does work on a system, or the energy

loss of that field, is given by

dW

dt
=

d

dt
〈Ψ (t) |Hsolid|Ψ (t)〉 = i〈Ψ (t) |

[
Hext (t) , Hsolid

]
|Ψ (t)〉, (1.55)

that, using the equation of motion for |Ψ (t)〉, can be rewritten as

〈Ψ (t) |
[
Hext (t) , Hsolid

]
|Ψ (t)〉

= i
d

dt
〈Ψ (t) |Hext (t) |Ψ (t)〉 − 〈Ψ (t) | d

dt
Hext (t) |Ψ (t)〉, (1.56)

so to obtain

dW

dt
=

∫

dr

[

Aext (r, t)
djind (r, t)

dt
− φext (r, t)

dρind (r, t)

dt

]

. (1.57)

Using the expansions given by Eqs. (1.16) and Eq. (1.17) for jind (r, t) and ρind (r, t)

we obtain

dW

dt
= −

∫

dt′drdr′ Aext (r, ω)
d

dt
χjj (rr′, t− t′)Aext (r′t′) , (1.58)

in the transverse case and

dW

dt
= −

∫

dt′drdr′ φext (r, t)
d

dt
χρρ (rr′, t− t′)φext (r′t′) , (1.59)

in the longitudinal. The average energy loss is obtained by averaging over a cycle

of the external monochromatic field and taking the real part. In the transverse case

we obtain

dW

dt
= 1/2

∫

drdr′
[
Aext (r, t)

]∗
ωχ

′′

jj (rr′, ω)Aext (r′, ω) , (1.60)
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while a similar result involving ρext and χ
′′

ρρ is obtained for the longitudinal case.

Consider, now, the absorption of light by the solid; if

Aext (r, ω) = −i/ωEext (q, ω) eiq·r, (1.61)

we get

dW

dt
=

ω

8π

[
−Im

(
ε−1 (ω)

)] ∣
∣Eext (q, ω)

∣
∣
2

=
ω

8π
Im [ε (ω)]

∣
∣Etot (q, ω)

∣
∣
2
. (1.62)

In the case of energy loss of electrons, the external charge density can be assumed

classical (because of the large electron energy) so that ρext (r, t) = δ (r − vt) and

ρext (q, ω) = 2πδ (ω − q · v) = |q|2/4πρext (q, ω) , (1.63)

with v electron velocity. Now the energy loss of the incident electron per unit path

length is the quantity usually calculated. It is given by the real part of

dW

dx
=

dW

|v|dt =
1

|v|

∫

dt′drdr′ φext (r, t)
d

dt
χρρ (rr′, t− t′)φext (r′t′) , (1.64)

but Eqs. (1.22) can be used to relate χρρ to χjj

χ
′′

ρρ (ω) =

( |q|
ω

)2

χ
′′

jj (ω) = −|q|2
4π

Im
[
ε−1 (ω)

]
. (1.65)

We thus find, from Eq. (1.64), the well–known result

dW

dx
= − 1

2π2|v|

∫

dqdω
ω

|v|2 Im
[
ε−1 (ω)

]
δ (ω − q · v) . (1.66)

1.2 Density–Functional–Theory

In the last section we have introduced a set of observables measured in optical

and energy loss experiments. From Eq. (1.9) follows that, although the system is

initially at rest, the evolved ground state under the action of the external disturbance

acquires components over all the possible excited states of the system.

The calculation of these excited states is, however, a formidable task. Many

different approaches are possible but all of them have to restore some reasonable

approximations. In Section 1.3 we will introduce the Green’s function concept where

the excited states are easily linked to the spectral decomposition of the function.

But, as we will see, both theory and implementation are rather complicate.

A completely different approach is devoted to the definition of the best single–

particle potential able to reproduce the full spectra of excitations of the system.
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Clearly in this case all is described in terms of Fock states, product of these “best”

single–particle states. We will see, as examples, the Hartree and Hartee-Fock approx-

imations. All these approaches define the “best” single–particle potential through a

variational principle.

A similar approach is that of the Thomas–Fermi model [2], with a, non marginal,

characteristic: the model does express the ground state energy in terms of the density

alone. This could appear as an heuristic attempt to cut the chain of many–body

correlations contained in the full interacting hamiltonian.

Moreover the notion that ground state properties of a quantum many–particle

systems can be characterized solely in terms of the one–particle density is not obvi-

ous. This could appear as an indication that the Thomas–Fermi model still remains

an heuristic model, and the link between ground state energy and density a lucky

property.

In this framework the basic theorem of Hohenberg–Kohn has a fundamental

importance. The original theorem states that an exact representation of the ground

state properties of a stationary, non relativistic many–particle systems in terms of

the exact ground state density is possible. This is the basis of Density–Functional–

Theory (DFT).

In the following we will describe this basic theorem for a rather simple cases. A

rigorous foundation of DFT has been extended to cover practically all the situations

of interest [2].

1.2.1 The Hohenberg–Kohn theorem

The hamiltonian describing the fully interacting system at rest, Eq. (1.2), contains

a Coulomb part plus a single–particle contribution. This term is completely defined

if the external potential V (r) is given

Ĥ = T̂ + V̂ + Ĥcoul. (1.67)

In second quantised notation Eq. (1.67) reads

Ĥ =

∫

drψ† (r)
∇2

2
ψ (r) +

∫

drψ† (r)V (r)ψ (r) + Ĥcoul. (1.68)

To prove the Hohenberg–Kohn theorem [3] we define a set V of local one–particle

potentials with the property that the solutions of each eigenvalue problem

Ĥ|Φ〉 =
(

T̂ + V̂ + Ĥcoul

)

|Φ〉 = E|Φ〉 V ∈ V , (1.69)
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leads to a non–degenerate ground state for the N electrons system:

Ĥ|Ψ〉 = Egs|Ψ〉. (1.70)

Collecting the ground states in the set Ψ we have defined, via the solution of

Schrödinger Eq. (1.70), a map

C : V → Ψ. (1.71)

This map is surjective by construction: Ψ contains no element which is not associ-

ated with some element of V .

Next, for all ground state wavefunctions contained in Ψ, we calculate the ground

state densities

n (r) = 〈Ψ|ψ† (r)ψ (r) |Ψ〉, (1.72)

establishing a second map:

D : Ψ → N . (1.73)

This map of the ground state wavefunctions on the set of ground state densities N
is again surjective.

Hohenberg–Kohn theorem is, then: the map C and D are also injective (one to one)

and thus fully invertible.

From the invertibility of maps C and D, three statements of Hohenberg–Kohn

theorem follows:

(1th): having established that unique inversion of map D is possible

D−1 : n (r) → |Ψ [n]〉. (1.74)

the first statement of Hohenberg–Kohn theorem can be formulated: the Ground

state expectation value of any observable is a unique functional of the exact

ground state density

〈Ψ [n] |Ô|Ψ [n]〉 = O [n] , (1.75)

The inverse map

(CD)−1 : n (r) → V (r) , (1.76)

tells us that the knowledge of the ground state density determines the external

potential of the system and thus, as the kinetic energy and the Coulomb

interaction are specified, the entire hamiltonian.
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(2th): The Hohenberg–Kohn theorem establishes the variational character of the en-

ergy functional

EV0
[n] ≡ 〈Ψ [n] |T̂ + V̂0 +Hcoul|Ψ [n]〉, (1.77)

where V0 is the external potential of a specific system with ground state density

n0 (r) and ground state energy E0. The state |Ψ [n]〉 is generated from the

elements of N via D−1. EV0
[n] has the property

E0 < EV0
[n] for n 6= n0, (1.78)

and

E0 = EV0
[n0] . (1.79)

Thus the exact ground state density can be determined by minimization of

the functional EV0
[n], in short

E0 = min
n∈N

EV0
[n] . (1.80)

(3th): The map D−1 does not depend on the potential V0 of the particular system

under consideration. Thus

EV0
[n] = FHK [n] +

∫

drV0 (r)n (r) , (1.81)

with

FHK [n] = 〈Ψ [n] |T̂ +Hcoul|Ψ [n]〉. (1.82)

The functional FHK [n] is universal in the sense that it does not depends on

V0.

The three statements of invertibility, variational access and universality constitute

the classical formulation of the Hohenberg–Kohn theorem.

1.2.2 Kohm–Sham equations

The Hohenberg–Kohn theorem offers no practical guide to the explicit construction

of the FHK universal functional. For this purpose one still has to face the full

intricacies of the many–body problem.

Although there are some energy functionals for Coulomb systems derived with

the theory of the homogeneous electron gas or in other, more elaborated approaches,

14



the situation cannot be considered satisfactory. Only with the approach introduced

by Kohm and Sham [4] has one been able to calculate (not only) ground state

properties of many–particles Coulomb systems with great accuracy.

Consider an auxiliary system of N non–interacting particles described by the

hamiltonian

Ĥs = T̂ + V̂s, (1.83)

According to the theorem of Hohenberg–Kohn, there exists a unique energy func-

tional

Es [n] = Ts [n] +

∫

drVs (r)n (r) , (1.84)

for which the variational principle yields the exact ground state density ns (r) cor-

responding to Ĥs. Ts [n] denotes the universal kinetic energy functional of non–

interacting particles.

The central assertion of the Kohn–Sham scheme is: for any interacting system,

there exists a local single–particle potential Vs (r) such that the exact ground state

density n (r) of the interacting system equals the ground state density of the auxiliary

problem,

n (r) = ns (r) . (1.85)

Thus the ground state density n (r) possesses a unique representation

n (r) =
∑

i=1...N

|φi (r)|2 , (1.86)

in terms of the lowest N single–particle orbitals obtained from the Schrödinger equa-

tion
[

−∇2

2
+ Vs (r)

]

φi (r) = εiφi (r) . (1.87)

Now consider a particular interacting system with external potential V0 (r) and

ground state density n0 (r). To determine the auxiliary potential Vs,0 (r) which

generates n0 (r) via

n0 (r) =
∑

i=1...N

|φi,0 (r)|2 , (1.88)

[

−∇2

2
+ Vs,0 (r)

]

φi,0 (r) = εi,0φi,0 (r) , (1.89)
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the exchange–correlation function Exc [n] is introduced as

EV0
[n] = Ts [n] +

∫

drV0 (r)n (r) + 1/2

∫

dr

∫

dr′ n (r) v (r, r′)n (r′) + Exc [n] ,

(1.90)

Exc [n] = FHK [n] − 1/2

∫

dr

∫

dr′ n (r) v (r, r′)n (r′) − Ts [n] ; (1.91)

with v (r, r′) Coulomb interaction. Now the Hohenberg–Kohn variational principle

ensures that EV0
[n] is stationary for small variations δn (r) around the minimum

density n0 (r). If we define

Vxc ([n0] , r) =
δExc [n]

δn (r)

∣
∣
∣
∣
n0

, (1.92)

the assumption that the system is non–interacting representable (the KS ansatz)

also for small deviations around the [n0 (r) + δn0 (r)] allows to write, by neglecting

second order terms,

δTs = −
∫

drVs,0 (r) δn (r) . (1.93)

Thus one is left with the final expression

Vs,0 (r) = V0 (r) +

∫

dr′ v (r, r′)n0 (r′) + Vxc ([n0] , r) . (1.94)

Eqs. (1.88–1.89) and the potential defined in Eq. (1.94) represents the classical Khon–

Sham scheme.

1.2.3 Local Density Approximation

In principle, solution of Kohn–Sham Eqs. (1.88–1.89) with the exact exchange–

correlation potential, would give a set of fictious single particle eigenstates whose

density of states equals that one of the fully interacting system. Unluckily the

exact exchange–correlation potential is not known and one has to find reasonably

approximations for Vxc.

One of the most widely used is the Local Density Approximation (LDA). Intro-

ducing the exchange–correlation energy density εxc ([n] ; r) as

Exc [n] =

∫

drn (r) εxc ([n] ; r) , (1.95)

we assume the the system locally appears as an homogeneous electron gas. For the

latter we split εxc ([n] ; r) as composed of

εhom
xc (n) = εhom

x (n) + εhom
c (n) , (1.96)
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with εhom
x (n) bare exchange and εhom

c (n) correlation energy density. While εhom
x (n)

is an analytic function of n [5]

εhom
x (n) = −3

4

[
3n

π

]1/3

, (1.97)

the correlation part can be calculated approximately using Many–Body perturba-

tion theory [6] or via quantum Montecarlo methods [7]. The first method gives

an analytic function of n while the results from numerical Montecarlo has been

parametrized by, e.g., Perdew and Zunger [8].

1.3 Green’s function approach to the many–body

problem

In the last section we have introduced a theoretical framework to describe a fully

interacting system in terms of a non physical gas of free particles.

Although those Kohn–Sham (KS) particles appear as fictious quantities in the

mathematical approach, they have allowed a successful starting point in the descrip-

tion of experimental photoemission data, as well as optical spectra [9]. However, as

we will see in the implementation of DFT–LDA on Copper and Silver, the residual

discrepancies between theory and experiment are due to the approximate inclusion

of correlation effects.

In this section we will introduce a presentation of the many–body Green’s func-

tion technique based on the, more compact, formulation of functional derivatives.

The discussion about conserving approximation follows the work of Baym and

Kadanoff [10] (also the figures are taken from their work of 1961). The section

about GW is written in the spirit of the Hedin’s equations [11, 12], elegant and

formally simpler than the conventional diagrammatic technique [5].

1.3.1 Conserving approximations

We consider the same (non relativistic) N–electrons system described by the hamil-

tonian give in Eq. (1.2), rewritten in the more compact form

H =

∫

drψ† (r)h (r)ψ (r) + 1/2

∫

dr dr′ ψ† (r)ψ† (r′) v (r, r′)ψ (r′)ψ (r) , (1.98)

with, now, the external potential included in the one body term h (r) while the

Coulomb term explicitly written. The system is assumed to interact with an external
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scalar potential trough the hamiltonian H ′ (t)

H ′ (t) =

∫

dr dr′ ψ† (r)U (r, r′; t)ψ (r) , (1.99)

with U (r, r′; t) hermitian at any time in the variables (r, r′). This potential is further

assumed to vanish in the |t| → 0 limit.

The introduction of the interaction given by Eq. (1.99) may be considered as a

purely formal tool that is vanished at the end of the calculation. Nevertheless, the

general formulation we will use could be used to describe the coupling of the system

to an external physical local potential as that used in Section 1.1

U (r, r′; t) = φext (r; t) δ (r, r′) . (1.100)

Indeed, using Eq. (1.100) the present formulation will reproduce the same quantities

defined in Section 1.1 with the explicit treatment of many–body Coulomb interac-

tion. In the interaction representation [13] we define

ψ (1) = eiHt1ψ (r1) e
−iHt1 , (1.101)

H ′
I (t) = eiHtH ′ (t) e−iHt, (1.102)

and the generalized single and two–particle Green’s function

G1 (1, 2) = (−i) 〈Ψ|T {Sψ (1)ψ† (2)}|Ψ〉, (1.103)

G2 (1, 2; 3, 4) = (−i)2 〈Ψ|T {Sψ (1)ψ (2)ψ† (4)ψ† (3)}|Ψ〉, (1.104)

with

S = e−i
R

∞

−∞
H′

I(t) dt. (1.105)

Starting from Eq. (1.103) and Eq. (1.104), using the definition of T–product to act

separately on the negative and positive time contribution to G1 the following time

evolution equation can be obtained

[

i
∂

∂t1
− h (1)

]

G1 (1, 2) −
∫

d3U (1, 3)G1 (3, 2)

= δ (1, 2) − i

∫

d3 v (1, 3)G2

(
1, 3+; 2, 3++

)
, (1.106)

where we have introduced the notation

v (1, 2) = v (r1, r2) δ (t1 − t2) , (1.107)

h (1) = h (r1) , (1.108)

U (1, 2) = U (r1, r2; t) . (1.109)
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An alternative equation can be obtained following the same procedure used to get

Eq. (1.106)

[

−i ∂
∂t2

− h (2)

]

G1 (1, 2) −
∫

d3G1 (1, 3)U (3, 2)

= δ (1, 2) − i

∫

d3 v (2, 3)G2

(
1, 3−−; 2, 3−

)
. (1.110)

Now we have all the ingredients to properly define a conserving approximation for

G1. The Baym–Kadanoff [10] condition reads:

Whenever the following conditions are satisfied:

(A) for a given approximate G2, G1 satisfies both Eq. (1.106) and Eq. (1.110).

(B) The G2 chosen satisfies

G2

(
1, 3; 1+, 3+

)
= G2

(
3, 1; 3+, 1+

)

then the approximate G1 satisfies all the conservation laws.

As an example, the number conservation law, for the approximate G1 follows from

statement (A) alone. Subtracting Eq. (1.110) from Eq. (1.106) we find

i [∂t1 + ∂t2 ]G1 (1, 2) + [(∇1 + ∇2) · (∇1 −∇2) /2i] iG1 (1, 2)

=

∫

d3 [U (3, 2)G1 (1, 3) − U (1, 3)G1 (3, 2)]

− i

∫

d3
[
v (2, 3)G2

(
1, 3−; 2, 3−−

)
− v (1, 3)G2

(
1, 3+; 2, 3++

)]
, (1.111)

when 2 = 1+ we find

i∂t1G1

(
1, 1+

)
+ ∇1 · [(∇1 −∇2) /2iiG1 (1, 2)]2=1+ = ∂t1〈ρ (1)〉 + ∇1 · 〈j (1)〉

=

∫

d3 [U (3, 1)G1 (1, 3) − U (1, 3)G1 (3, 1)] . (1.112)

Eq. (1.112) is an exact statement of the number conservation law in the presence

of an external disturbance which adds and removes particles from the system. For

a local disturbance U (1) δ (1 − 2), that describes the coupling of the system to the

density, Eq. (1.112) becomes

∂t1〈ρ (1)〉 + ∇1 · 〈j (1)〉 = 0, (1.113)

which expresses the charge conservation rule. Going back to the two conditions (A)

and (B) defining a conserving approximation for G1 we note that condition (B) may
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always be verified by simply examining the form of the approximation for G2. It

is convenient to cast condition (A) into a form in which it too may be verified by

inspection. If we define the non–interacting Green’s function G0 (1, 2) to be solution

of equation

[

i
∂

∂t1
− h (1)

]

G0 (1, 2) = δ (1, 2) , (1.114)

we notice that the
[

i ∂
∂t1

− h (1)
]

operator can be always substituted with the inverse

[G0 (1, 2)]−1. We see that the matrix product G1

[
G−1

0 − U
]
G can be constructed

from both Eq. (1.106) and Eq. (1.110). Demanding that these two evaluations be

identical condition (B) results equivalent to

∫

d1̃3G1

(
1, 1̃
)
v
(
1̃, 3
)
G2

(
1̃, 3+; 2, 3++

)
=

∫

d1̃3G2

(
1, 3; 1̃, 3+

)
v
(
3, 1̃
)
G1

(
1̃, 2
)
.

(1.115)

This equation is equivalent to condition (A). Eq. (1.115), as condition on G2, is

easily verified by inspection for a choice of approximation. In Fig.(1.1) it is shown

how this can be done diagrammatically for the Hartee-Fock case.

Figure 1.1: Diagrammatic statement of conditions (A) and (B ) in the Hartee–Fock approxima-

tion. Diagram (a) represents the Hartee-Fock approximation for G2. Condition (B) is simply the

statement that the picture for G2 with 1′ = 1+ and 2′ = 2+ must look the same when it is turned

upside downside. To see the graphical form of condition (A) in the Hartee–Fock approximation,

in (b) and (c), the right and left sides, respectively, of Eq. (1.115). The dashed lines represents the

bare Coulomb interaction v.

In order to rewrite Eq. (1.106) and Eq. (1.110) in a more convenient form we
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define the self–energy operator Σ

Σ (1, 2) = −i
∫

d34 v
(
1+, 3

)
G2

(
1, 3+; 4, 3++

)
G−1

1 (4, 2) , (1.116)

The Green’s function equation is, then,

G−1 (1, 2) = G−1
0 (1, 2) − U (1, 2) − Σ (1, 2) , (1.117)

known as Dyson equation. Once we have a determination of G1, we can find the

linear response to the external disturbance by picking out the linear coefficient of U

in G1. This is

L (1, 2; 3, 4) ≡ δG1 (1, 3)

δU (4, 2)
, (1.118)

and L is the link with the linear response theory introduced and discussed in Sec-

tion 1.1. Indeed, as we will show later, the T–ordered polarization function intro-

duced in Section 1.1 is given, in the present framework, by

χ (1, 2) ≡ −iL
(
1, 2; 1+, 2+

)
. (1.119)

In Section 1.1 we obtained the longitudinal sum rule, Eq. (1.24), imposing the gauge

invariance of the induced current and charge, calculated at the first order in the

external perturbance. In the present framework the same conclusion is obtained

as consequence of the conservation laws for G1 (as explicitly shown in the Baym–

Kadanoff work [10]).

In principle, then, we can obtain a conserving L by first solving for a conserving

G1. We can then generate L as δG1/δU , the coefficient of U in the term in G1 that

is linear in U . In practice, we can almost never solve the equation of motion for G1

in the presence of an arbitrary disturbance. Fortunately a much simpler calculation

procedure is available. From the relation G−1
1 G1 = 1 we notice that

δG1 (1, 3)

δU (4, 2)
= −

∫

d56G1 (1, 5)
δG−1

1 (5, 6)

δU (4, 2)
G1 (6, 3) . (1.120)

Calculating G−1
1 from Eq. (1.117) we find

δG1 (1, 3)

δU (4, 2)
= −

∫

d56G1 (1, 5)

[

δ (4, 5) δ (2, 6) +
δΣ (5, 6)

δU (4, 2)

]

G1 (6, 3) . (1.121)

The self–energy depends on U only through its dependence on G1. Since we know

Σ as a functional of G, we can, then, compute δΣ/δU by the chain–rule for differ-

entiation, i.e.,

δΣ (5, 6)

δU (4, 2)

∣
∣
∣
∣
U=0

=

∫

d78
δΣ (5, 6)

δG1 (7, 8)

∣
∣
∣
∣
U=0

δG1 (7, 8)

δU (4, 2)

∣
∣
∣
∣
U=0

. (1.122)
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We define an effective two–particle interaction Ξ, by

Ξ (3, 5; 4, 6) ≡ δΣ (3, 4)

δG1 (6, 5)

∣
∣
∣
∣
U=0

(1.123)

The we combine Eq. (1.118),Eq. (1.121) and Eq. (1.122) to obtain the final integral

equation for L:

L (1, 2; 1′, 2′) = G1 (1, 2′)G1 (2, 1′)

+

∫

d3456G1 (1, 3)G1 (4, 1′) Ξ (3, 5; 4, 6)L (6, 2; 5, 2′) , (1.124)

known as Bethe–Salpeter equation for L.

From the definition given in Eq. (1.118) the two–particle correlation function

L (1, 2; 1′, 2′) obeys the conservation laws for the operators constructed from the

1 and 1′ variables (those coming from G1). It is important, however, to have L

also be conserving in the 2 and 2′ variables. We shall therefore demand that the

approximate L satisfies

L (1, 2; 1′, 2′) = L (2, 1; 2′, 1′) . (1.125)

To ensure this symmetry, we impose just one more condition on our approximation,

namely:

Ξ (3, 5; 4, 6) = Ξ (5, 3; 6, 4) . (Condition (C))

One of the main virtues of the procedure described here is the fact that it automat-

ically builds in the close connection between G and L.

Let us briefly review the method for constructing a conserving approximation for

the two–particle correlation function L. We start by picking an approximate form

for G2 as functional of G1, which we then substitute into the equation of motion for

G1. In order that this approximation leads to a conserving G1 and L, we demand

that the approximate G2 satisfies the symmetry requirements (A), (B) and (C).

These three requirements can be verified by merely examining the structure of G2.

If they are met, then we can derive an approximate integral equation, whose solution

is a fully conserving L, by taking the first variational derivative with respect to U

of the equation of motion for G1.

Since G2 = L+G1G1, we start from a non conserving approximation for G2 and

end up with a fully conserving G2.
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1.3.2 Examples of conserving approximations

The Hartree and Hartee–Fock approximations

Figure 1.2: Hartree approximation. We use the light line to represent G0 and an heavy line for

G1.

The Hartee approximation, which describes the motion of the particles in the system

as that of free particles in a self–consistent field, is the simplest nonperturbative (in

he sense that all the G’s and L’s will include terms of arbitrarily high order in v)

approximation for G1. We get it taking

G2

(
1, 3−; 2, 3+

)
= G1 (1, 2)G1

(
3, 3+

)
, (1.126)

then following Eq. (1.116) the self–energy is defined as

ΣH (1, 2) = iδ (1, 2)

∫

d3v (1, 3)G1

(
3, 3+

)
. (1.127)

The variational derivative of Eq. (1.127) gives Ξ and, then, the following equation

fro L

L (1, 2; 1, 2′) = G1 (1, 2′)G1 (2, 1′) + i

∫

d34G (1, 3)G (3, 1′) v (3, 4)L (4, 2; 4, 2′) .

(1.128)

Since

Ξ (3, 4; 3′, 4′) = iδ (3, 3′) δ (4, 4′) v (3, 4) , (1.129)
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it is clear that conditions (A), (B) and (C) are satisfied, and L is fully conserving.

Eq. (1.128) constitute the formal statement of random–phase–approximation (RPA)

and it can be rewritten introducing the dynamically screened interaction W defined

as

W (1, 2) = v (1, 2) + i

∫

d34 v (1, 3)G1 (3, 4)G1 (4, 3)W (4, 2) . (1.130)

The set of equations defining the Hartree approximation are shown in Fig. (1.2).

The Hartee–Fock approximation also describes the particles as moving in an

average potential field. However, this field now includes exchange effects. This is

represented by the second term of the G2 Green’s function of Fig. 1.1, and follow-

ing the same procedure described in the Hartee case the corresponding self–energy

operator and integral equation for L are shown in Fig. 1.3.

The equation for L is equivalent to the generalization of RPA to include exchange

L (1, 2; 1′, 2′) = G1 (1, 2′)G1 (2, 1′)

+ iδ (1, 1′)

∫

d34G1 (1, 3)G1

(
3, 1+

)
v (3, 4)L (4, 2; 4, 2′)

+ i

∫

d34G1 (1, 3)G1

(
4, 1+

)
v (3, 4)L (3, 2; 4, 2′) . (1.131)

Like in RPA the solution of Eq. (1.131) is a sum of bubble diagrams where now

each bubble is essentially composed of a hole–electron scattering matrix made of

Hartee–Fock Green’s functions.

Figure 1.3: The Hartee–Fock approximation.

The T–Matrix approximation

Both the Hartree and the Hartee-Fock approximations leave out the detailed cor-

relations produced by interparticle collisions and they can be used to describe phe-

nomena, like plasma oscillations, for which collisions are not important.
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A conserving approximation which includes collisions effects can be constructed

starting from the Bethe–Goldstone approximation for G2

G2 (1, 3; 1′, 3′) = G1 (1, 1′)G1 (3, 3′) +G1 (1, 3′)G1 (3, 1′)

+ i

∫

d45G2 (1, 3; 4, 5) v (4, 5)G1 (4, 1′)G1 (5, 3′) . (1.132)

This G2 is a sum of ladder diagrams, in which each line represents a propagator

G1. The Bethe–Goldstone approximation is conveniently described in terms of the

many–particle scattering matrix 〈13|T [G1] |1′3′〉 that satisfies

〈13|T [G1] |1′3′〉 = [δ (1, 1′) δ (3, 3′) + δ (1, 3′) δ (3, 1′)] v (1′, 3′) +

+ i

∫

d45 〈13|T [G1] |45〉G1 (4, 1′)G1 (5, 3′) v (1′, 3′) . (1.133)

The relation between T and G2 is shown in Fig. 1.4. The corresponding Self–energy

operator is easily written in terms of the T scattering matrix

Σ (1, 1′) = i

∫

d34 〈13|T [G1] |1′4〉G1

(
4, 3+

)
, (1.134)

and is known as T–matrix approximation (TMA). Constructing the corresponding

Ξ operator we can derive an approximation for L that includes collisions, while

maintaining all the conservation laws.

Figure 1.4: The T–Matrix approximation. (a) indicates the ladder structure of the solution of

Bethe–Goldstone equation for G2. Condition (B) is clear from this figure. (b) and (c) represents,

respectively, the self–energy and the integral equation for L.
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1.3.3 Hedin’s equations

Using the Baym–Kadanoff approach we have seen that a conserving approximation

can be obtained from a user defined two body Green’s function G2. Moreover the

procedure used in the last section is based on a mathematical and physical link

between G2, G1, Σ and L.

In the following we will rewrite the equation for G1 replacing G2 with the two

particle effective interaction Ξ. Exploiting the deep link of the functional approach

with linear response theory the self–energy problem will be rewritten as a set of

nonlinear coupled integral equations suitable for systematic improvements beyond

the simple basic approximation, called GW and described below.

Using a local external potential U (1), in order to replace the two–body Green’s

with the functional derivative using the identity

G2

(
1, 3; 2, 3+

)
= G1 (1, 2)G1

(
3, 3+

)
− δG1 (1, 2)

δU (3)
, (1.135)

Eq. (1.106) reads

[

i
∂

∂t1
− h (1) − U (1) + i

∫

d3 v (1, 3)G1

(
3, 3+

)
]

G1 (1, 2)

= δ (1, 2) − i

∫

d3 v
(
1+, 3

) δG1 (1, 2)

δU (3)
; (1.136)

and a similar result for Eq. (1.110).

Eq. (1.136) is not yet in a form suitable for taking the U → 0 limit, since we do

not know the functional dependence of G1 on U. Introducing the inverse Green’s

function G−1
1 (1, 2) defined as

∫

d1G−1
1 (1, 2)G1 (2, 3) =

∫

d1G1 (1, 2)G−1
1 (2, 3) = δ (1, 2) , (1.137)

the Self–energy operator becomes

Σ (1, 2) ≡ ΣH (1, 2) + i

∫

d34 v
(
1+, 3

) δG1 (1, 4)

δU (3)
G−1

1 (4, 2) , (1.138)

Σ (1, 2) ≡ ΣH (1, 2) + i

∫

d34G−1
1 (1, 4)

δG1 (4, 2)

δU (3)
v
(
3, 2−

)
. (1.138′)

Here ΣH (1, 2) stands for the Hartee contribution to the Self–Energy

ΣH (1, 2) = δ (1, 2)

[

−i
∫

d3 v (1, 3)G1

(
3, 3+

)
]

, (1.139)
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while the rest is sometimes defined as the mass-operator M (M when Σ is consid-

ered). Finally we get

[

i
∂

∂t1
− h0 (1) − U (1)

]

G1 (1, 2) −
∫

d3 Σ (1, 3)G1 (3, 2) = δ (1, 2) , (1.140)

[

i
∂

∂t2
− h0 (2) − U (2)

]

G1 (1, 2) −
∫

d3G1 (1, 3) Σ (3, 2) = δ (1, 2) . (1.140′)

We proceed to eliminate any explicit reference to the external potential U in the

self–energy operator. To this end, we introduce the following auxiliary quantities:

(i) The total (classical) potential V

V (1) = U (1) − i

∫

d3 v (1, 3)G1

(
3, 3+

)
. (1.141)

Regarding G1 as a functional of V and using the “chain rule”

i

∫

d34 v
(
1+, 3

) δG1 (1, 4)

δU (3)
G−1

1 (4, 2)

= −i
∫

d345 v
(
1+, 3

)
G1 (1, 4)

δG−1
1 (4, 2)

δV (5)

δV (5)

δU (3)
, (1.142)

Eq. (1.138) suggests to introduce a

(ii) scalar (irreducible) vertex function Γ̃ (1, 2; 3)

Γ̃ (1, 2; 3) ≡ −δG
−1
1 (1, 2)

δV (3)
= δ (1, 3) δ (2, 3) +

δM (1, 2)

δV (3)
. (1.143)

Since the mass operator M depends on the external potential U only through

its dependence on the generalized single particle Green’s function, we can again

use the chain rule to obtain an integral equation for Γ̃

Γ̃ (1, 2; 3) = δ (1, 3) δ (2, 3) +

∫

d45
δM (1, 2)

δG1 (4, 5)

δG1 (4, 5)

δV (3)

= δ (1, 3) δ (2, 3) +

∫

d4567
δM (1, 2)

δG1 (4, 5)
G1 (4, 6)G1 (7, 5) .Γ̃ (6, 7; 3) (1.144)

This can be considered the equation defining Γ̃, whereby the limit U → 0 can

explicitly be taken.

Eq. (1.144) defines the irreducible two particle effective interaction Ξ̃ (1, 5; 4, 2)

(we have already introduced the reducible one)

Ξ̃ (1, 5; 4, 2) ≡ δM (1, 2)

δG1 (4, 5)
. (1.145)
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From Eq. (1.144) we note that the unknown dependence on U (1) has been

reduced, first in the vertex function and, then, by means of Eq. (1.144) in

Ξ̃ (1, 5; 4, 2). In the following we will introduce other important quantities

that, however, will be explicitly given in terms of Ξ̃.

(iii) Eq. (1.138) suggests, also, to introduce an inverse (longitudinal) dielectric func-

tion ε−1

ε−1 (1, 2) =
δV (1)

δU (2)
, (1.146)

which turns out to coincide with Eq. (1.42) obtained in Section 1.1 directly

from Maxwell Equations.

Using Eq. (1.141) and the identity

−iG1

(
1, 1+

)
=

〈Sρ (1)〉
〈S〉 , (1.147)

with ρ (1) = ψ† (1)ψ (1), we can find the relation between the dielectric func-

tion and the polarizability χ (1, 2)

ε−1 (1, 2) = δ (1, 2) +

∫

d3 v (1, 3)χ (3, 2) , (1.148)

where

χ (1, 2) ≡ δ〈ρ (1)〉
δU (2)

=
〈T {Sρ′ (1) ρ′ (2)}〉

〈T {S}〉 , (1.149)

with

ρ′ (1) ≡ ρ (1) − 〈ρ (1)〉; (1.150)

is the density deviation operator. Noting that 〈ρ (1)〉 = −iG1 (1, 1+) we find

the proof of Eq. (1.119). It is convenient to single out from χ the part which

is irreducible with respect to the bare Coulomb interaction v by regarding the

average density as a functional of the total potential V

χ (1, 2) =

∫

d3
δ〈ρ (1)〉
δV (3)

δV (3)

δU (2)
=

∫

d3 χ̃ (1, 3) ε−1 (3, 2)

= χ̃ (1, 2) +

∫

d34 χ̃ (1, 3) v (3, 4)χ (4, 2) , (1.151)

where we have defined the irreducible polarizability χ̃ to be

χ̃ (1, 2) ≡ δ〈ρ (1)〉
δV (2)

. (1.152)
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Eq. (1.151) can be regarded as an integral equation to be solved for χ once the

kernel χ̃ is specified. Knowledge of χ̃, in turn, can be related to that of the

vertex function Γ̃

χ̃ (1, 2) = −iG1 (1, 1+)

δV (2)
= −i

∫

d34G1 (1, 3)G1 (4, 1) Γ̃ (3, 4; 2) . (1.153)

Notice that we can explain the (longitudinal) dielectric function ε in terms of

χ̃ as follows:

ε (1, 2) ≡ δU (1)

δV (2)
=

δ

δV (2)

[

V (1) −
∫

d3 v (1, 3) 〈ρ (3)〉
]

= δ (1, 2) −
∫

d3 v (1, 3) χ̃ (3, 2) , (1.154)

where
∫

d3 ε (1, 3) ε−1 (3, 2) =

∫

d3 ε−1 (1, 3) ε (3, 2) = δ (1, 2) . (1.155)

It is convenient to use the dynamically screened interaction W defined in

Eq. (1.130)

W (1, 2) =

∫

d3 ε−1 (1, 3) v (3, 2) =

v (1, 2) +

∫

d34 v (1, 3) χ̃ (3, 4)W (4, 2) , (1.156)

where the last line can be interpreted as an integral equation defining W .

Using the quantities introduced so far, the mass operator can be cast in its final

form

M (1, 2) =

∫

d34W
(
1+, 3

)
G1 (1, 4) Γ̃ (4, 2; 3) , (1.157)

together with the equation for M

M (1, 2) =

∫

d34 Γ̃ (1, 4; 3)G1 (4, 2)W
(
3, 2−

)
. (1.158)

Notice that the limit U → 0 can be readily taken in these equations.

All the quantities considered so far are still exact. Approximations can be gen-

erated either by expressing the set of coupled equations as (infinite) series in terms

of the non interacting G0
1 and Γ, thereby reproducing the Feynman–Dyson pertur-

bative expansion, or by truncating the set of coupled equations by making a specific

ansatz on the functional form of the mass operator M in terms of the self–consistent

G1 and W .
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So we have found that the many–body problem is reduced to the solution of a

set of integral equations, known as Hedin equations [12]

M (1, 2) =

∫

d34W
(
1+, 3

)
G1 (1, 4) Γ̃ (4, 2; 3) , (Self − Energy)

Γ̃ (1, 2; 3) = δ (1, 3) δ (2, 3) +

∫

d4567
δM (1, 2)

δG1 (4, 5)
G1 (4, 6)G1 (7, 5) Γ̃ (6, 7; 3) ,

(V ertex)

W (1, 2) = v (1, 2) +

∫

d34 v (1, 3) χ̃ (3, 4)W (4, 2) , (Screened Interaction)

χ̃ (1, 2) = −iG1 (1, 1+)

δV (2)
= −i

∫

d34G1 (1, 3)G1 (4, 1) Γ̃ (3, 4; 2) , (Polarization)

that, together with Eq. (1.117), represent an exact formulation of the Many–Body

problem. Moreover, altought Hedin’s equations are not exactly solvable, any self–

consistent solution following from an approximate Ξ̃ represents a conserving ap-

proach in the Baym–Kadanoff sense.

1.3.4 GW and GW0 Self–energies

Currently one of the most successful approximation for self-energy operator is the

GW approximation that has yielded remarkably accurate band structures for many

materials [14].

GW approximation is obtained as first term in the expansion of Hedin equations

in the expansion in the screened interaction W .

M (1, 2) ∼
∫

d34W
(
1+, 3

)
G1 (1, 4) . (1.159)

It is a conserving approximation, in the Baym–Kadanoff sense, as it possible to

define a two–bodies Green’s function that has GW as corresponding self–energy.
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Figure 1.5: Diagrammatic representation of the self-energy Σ(1, 2) and the corresponding

two-particle Green’s function G2(1, 3; 2, 4) in the fully self-consistent GW approximation. From

Ref.[15].
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In Fig. 1.5 the G2 for GW is shown [15]. To fulfill the Baym–Kadanoff condi-

tion, however, Dyson equation must be solved iteratively till convergence is reached.

Starting from G0 (1, 2) a first approximation to χ̃ (1, 2) is constructed

χ̃ (1, 2) ≈ χ0 (1, 2) = −iG0 (1, 2)G0 (2, 1) . (1.160)

This is used to construct the screened interaction W , and then, the mass operator

M . Using Dyson equation Σ (1, 2) is used to obtain G (1, 2) which will give a new

form of χ̃ (1, 2) and so on. As we will see in Chapter 3 the numerical implementation

of GW is rather demanding. Two possible different approaches are used: the first,

neglecting self–consistency leads to a not conserving approach that we will use to

calculate the band structure of copper and silver in Chapters 3–5.

An alternative approach is to update at each step of Dyson equation only the

single particle Green’s function G1, leaving the screening function W at the non–

interacting level. This approach, called GW0 is not fully conserving but it still

conserves the number of electrons in the system. This reduced fulfillment of con-

serving requirements has been proved numerically for the homogeneous electron

gas in Ref. [16] and, more recently, analytically in the Baym–Kadanoff scheme in

Ref. [15]. It will be used, in a simplified form, in Chapter 4 to study the lifetimes

of d–holes in copper.

1.3.5 From Kohn–Sham particles to many–body quasipar-

ticles

In the last section the many–body approach is introduced as a perturbation of the

non–interacting system. However, as we will experience in Chapter 3, DFT suggests

an optimal non–interacting representation of the system to start with.

This corresponds to substitute the h (1) hamiltonian of Eq. (1.98) with the Khon-

Sham one hKS (1)

hKS (1)φnk (r) =

[−∇2

2
+ VH (r) + Vxc (r)

]

φnk (r)

+

∫

dr′ VPP (r, r′)φnk (r′) = εnkφnk (r) , (1.161)

where VPP (r, r′) is a non-local pseudopotential, Vxc (r) is the exchange and corre-

lation potential and {φnk (r)} are the Bloch states. From Eq. (1.161) we see that

VH (1, 2) is already included in the DFT calculation. Moreover, we are using a
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non-interacting Green’s function G0 (1, 2) solution of equation
[

i
∂

∂t1
− hKS (1)

]

G0 (1, 2) = δ (1, 2) , (1.162)

and the exchange and correlation contained in Vxc must be considered in the Self–

energy corrections to the KS eigenstates. This can be done adding and subtract-

ing [2] Vxc (1, 2) = Vxc (r) δ (1, 2) from Eq. (1.117)

G (1, 2) = G0 (1, 2) +

∫

d34G0 (1, 3) [Σ (3, 4) − Vxc (3, 4)]G (4, 2) . (1.163)

As solution of Eq. (1.163) the Fourier transformed respect to (t2 − t1) of G (1, 2)

admits the biorthonormal representation [17]

G (r1, r2;ω) =
∑

λ

ψλ (r1, ω) ψ̃∗
λ (r2, ω)

ω − Eλ (ω)
, (1.164)

with ψλ (r1, ω), ψ̃λ (r2, ω) solution of

[h0 (r) + VH (r)]ψλ (r, ω) +

∫

dr′ Σ (r, r′;ω)ψλ (r′, ω) = Eλ (ω)ψλ (r, ω) , (1.165)

[h0 (r) + VH (r)] ψ̃λ (r, ω) +

∫

dr′ Σ† (r, r′;ω) ψ̃λ (r′, ω) = E∗
λ (ω) ψ̃λ (r, ω) , (1.166)

where Σ† (r, r′;ω) = [Σ (r′, r;ω)]∗. The quasiparticle concept comes from the as-

sumption that it’s possible to describe approximately the full energy dependence of

G (r1, r2;ω) with some well defined complex poles

G (r1, r2;ω) ≈
∑

λ

ψλ

(

r1, ε
QP
λ

)

ψ̃∗
λ

(

r2, ε
QP
λ

)

ω − εQP
λ

, (1.167)

with the quasiparticle energies defined by

εQP
λ = Eλ

(

εQP
λ

)

. (1.168)

Strictly speaking, this equation has, in general, no real-valued solutions; the non-

local, frequency dependent potential Σ (r′, r;ω) is, in general, not hermitian; this

means that the quasiparticles get a not infinite lifetime due to the presence of acces-

sible virtual excited states where the quasiparticle can decay. Moreover ψλ

(

r1, ε
QP
λ

)

and ψ̃λ

(

r1, ε
QP
λ

)

are orthonormal only when Σ (r′, r;ω) is hermitian. Mathemati-

cally in this case one has to look for solutions of Eq. (1.168) at complex frequencies

through a definition of the analytic continuation of G (r1, r2;ω) (and Σ (r′, r;ω)).

Moreover using the quasiparticle picture one fails to describe the continuous part

of the Green’s function that comes from the branch cut of G (r1, r2;ω) rather than

from isolated poles [18].
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The self-energy operator has the discrete translation invariance of the crystal so

that the quasiparticle’s wave functions can be expanded in terms Bloch functions

(obtained solving the single particle hamiltonian h (r)) at the same k-point

ψλk (r, ω) =
∑

n=1,Nb

αk
λn (ω)φnk (r) , (1.169)

ψ̃λk (r, ω) =
∑

n=1,Nb

α̃k
λn (ω) φ̃nk (r) , (1.170)

where the sum goes over the Nb bands included in the calculation and mixed by

the self energy. Eq. (1.165) and Eq. (1.166) became a Nb ×Nb linear system with ω

acting like a parameter

∑

n′

[〈nk|h0 (r) + VH (r) |n′k〉 + 〈nk|Σ (r, r′;ω) |n′k〉]αk
λn′ (ω) = Ek

λ (ω)αk
λn (ω) ,

(1.171)
∑

n′

[
〈nk|h0 (r) + VH (r) |n′k〉 + 〈nk|Σ† (r′, r;ω) |n′k〉

]
α̃k

λn′ (ω) =
[
Ek

λ (ω)
]∗
α̃k

λn (ω) ,

(1.172)

the Nb solutions of equation

Ek
n

(

εQP
nk

)

= εQP
nk n = 1 . . . Nb, (1.173)

will give a set of complex poles whose real and imaginary part will be compared

with experimental photoemission data.
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[15] A. Schindlmayr, P. Garćıa-González, and R. W. Godby, cond-mat/0110435.

[16] U.V. Barth and B. Holm, Phys. Rev. B 54,8411 (1996).

35



[17] P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill,

New York (1953), pp 864-866

[18] G. E. Engel, Behnam Farid, C. M. M. Nex and N. H. March, Phys. Rev. B

44, 13356 (1991)

36



Chapter 2

Optical properties and band

structure of copper within

Density–Functional–Theory

In this second chapter, an accurate first-principles study of the electronic structure

and absorption spectrum of bulk copper within Density Functional Theory in the

Local Density Approximation (DFT-LDA) is presented, including the study of in-

traband transitions. Norm-conserving pseudopotentials (PPs) including the 3d shell

(and optionally the underlying 3s and 3p shells) in the valence, requiring a relatively

small plane-waves basis (60 and 140 Rydbergs cutoff, respectively) are constructed.

As a consequence, these PPs are strongly non-local, yielding macroscopically wrong

results in the absorption spectrum when momentum matrix elements are computed

naively. The results are compared with experimental photoemission, absorption

and electron energy loss data, and suggest non trivial self-energy effects, that will

be discussed in the next chapter.

. . . . . . . . .

For a long time copper has played a central role in the elucidation of the elec-

tronic structure of solids. It is a relatively inert material, very easy to handle exper-

imentally; its energy dispersion relations (including spin-orbit interaction for some

bands) have been measured with considerable precision; lifetimes of the band states

as a function of the distance from Fermi level have been determined; surface states

at different surfaces have been analyzed in various parts of the Brillouin zones (for

a review see [1]). From the theoretical side, the study of noble metals like Copper

using first-principles methods based on plane-waves and ab-initio pseudopotentials
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(PPs) presents some peculiar complications in comparison with the case of simple

metals or semiconductors. In fact, in addition to metalicity, which implies the use of

an accurate sampling of the Brillouin zone in order to describe properly the Fermi

surface, one must also keep into account the contribution of d-electrons to the bond-

ing and to the valence bandstructure. This means that, within the PP scheme, d

states cannot be frozen into the core part, but must be explicitly included into the

valence, yielding a large total number of valence electrons (11 for bulk copper). Un-

fortunately, a Cu pseudopotential including 3rd shell states into the valence part is

very steep. Hence, when working with a plane–wave basis, the usage of a PP of this

kind may be computationally prohibitive.

On the other hand, the use of a pseudopotential without explicit treatment of 3d-

electrons has been shown to be unreliable [2]. Hence, first-principles methods based

on plane-waves have been used only seldom to treat Cu [2]. However, methods

have been devised for the construction of softer pseudopotentials [3, 4, 5, 6], which

make the inclusion of the 3rd shell in the valence more affordable. The price to be

paid is that the construction and use of such pseudopotentials, which often display

a very strong l-nonlocality, is a quite delicate matter. In particular, the choice of

a reference component [7] and the transferability checks must be done with care.

These difficulties are more than compensated by the simplicity and elegance of the

plane-waves formalism in the subsequent calculations. In the following, two possible

choices for the Cu pseudopotential are explored, i.e: a) including 3s and 3p electrons

into the frozen core (a quite standard choice), and b) including the full 3rd shell in the

valence. Fully converged Density Functional Theory – Local Density Approximation

(DFT-LDA) calculations are performed at 60 and 140 Ry cutoff, respectively for case

a) and b).

The chapter is organized as follows: in Section 2.1 the details of the construction

of the pseudopotentials used are given; in Section 2.2 and Section 2.3 I present the

ground state properties and bandstructure, respectively, obtained with the different

pseudopotentials; finally, in Section 2.4, the theoretical absorption and electron

energy loss spectra are compared with the experimental data, including the effects

of Local Fields and intraband transitions.

2.1 Pseudopotential generation

The Cu atom has the ground–state electronic configuration [Ar]3d104s1. 4s and 3d

eigenvalues are separated, in DFT–LDA, by less than 0.5 eV. It is then quite obvious
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that freezing all states but the 4s one into the atomic core (i.e., to neglect the

polarization of the 3d electrons) cannot yield a good, transferable pseudopotential.

On the other hand, inclusion of the 3d electrons into the valence (we call this a “3d”

pseudopotential) yields a much slower convergence of plane–wave expansions, due to

the steepness of the d-component of the PP. Unfortunately, the spatial superposition

between the 3d and 3s or 3p states is quite large, despite the large (' 70 eV) energy

separation. Hence, an even more conservative and secure choice for the PP is to

include all 3s, 3p and 3d electrons into the valence: in fact, 2p and 3s states are well

separated, both spatially and energetically (' 800 eV). This latter choice gives rise

to a PP which is even harder than the “3d” one, and which will be referred to as a

“3s” pseudopotential, yielding 19 valence electrons per atom.

Using the traditional pseudopotential generation scheme proposed by Bachelet,

Hamann and Schlüter (BHS) [7] yields PP whose d component converges very slowly

in Fourier space, requiring the use of an energy cutoff of 200 Rydbergs or more.

However, PPs which converge at less than 100 Rydbergs can be constructed by

using specially devised schemes as those of Refs. [3, 4, 5, 6]. In order to avoid

the additional numerical complications arising from the charge-state dependence of

the PP of Ref. [3], only norm conserving pseudopotentials are used. Moreover, the

choices in generating the PP are dictated not only by the need of a fast convergence

of the PP in Fourier space, but also by that of optimizing the PP accuracy and

transferability, a non–trivial task when 3s and 3p states are also included into the

valence. In particular, the Hamann scheme [8] (which does not try to optimize

the Fourier space convergence at all) turned out to yield much more accurate and

transferable norm–conserving PPs, particularly when the whole 3rd shell is included

into the valence.

Hence, I strictly follow the Hamann procedure (described in the appendix of

ref. [8]) whenever it is possible, i.e. in all cases except for the d components. For the

latter, the Troullier–Martins [6] scheme is used, which allows to reduce significantly

the number of plane–waves requested for convergence without loosing too much in

transferability. In all other cases (i.e. for the s and p components of both “3s”

and “3d” pseudopotentials) the Hamann procedure is found to be more convenient,

even at the cost of a slower Fourier space convergence, since the TM one yielded

significantly worse results, and/or ghost states [9] when the PP were used in the

Kleinman–Bylander form [10].

Another delicate point is the choice of a reference component, i.e. of a PP angular

momentum component which is taken to be valid for every l≥ 3. Often, the l=2
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component is chosen as a reference, simply because this makes calculations easier.

This choice is sometimes lacking a physical justification, and can be dangerous, as

it has been shown in the case of Sn [11]. In the present case the l = 2 reference had

to be avoided anyway, since it yielded a much worse transferability than the l=0 or

l=1 choices, and sometimes gave rise to ghost states in the KB form.

Several trials and tests with different cutoff radii have been done, in order to

optimize the PP transferability without increasing too much the number of plane

waves requested for convergence. Transferability tests included both the plot of

logarithmic derivatives, and the explicit calculation of pseudoatom eigenvalues in

some excited electronic configuration (both neutral and positively charged).

Finally, since 3s and 3p states in the solid preserve their atomic configuration bet-

ter than 3d ones, their explicit inclusion into the valence can sometimes be avoided,

by considering only the effects of the non-linearity of the exchange-correlation po-

tential [12]. Hence, a third pseudopotential, with frozen 3s and 3p electrons but

including non-linear core-corrections has also been considered, and will be referred

to as the “3d+NLCC” PP. In the latter, the core charge is represented by the true

one for r≥ 0.5 Bohrs, and by a Gaussian model charge for r≤ 0.5 Bohrs.

The resulting optimal cutoff radii and reference l–components, chosen for our

“3d”, “3s”, and “3d+NLCC” pseudopotentials, are given in Table 2.1.

Pseudopotential rs [Bohr] rp [Bohr] rd [Bohr] Reference l–component

“3d” 1.19 (H) 1.19 (H) 2.08 (TM) s

“3d+NLCC” 1.10 (H) 1.19 (H) 2.08 (TM) s

“3s” 0.49 (H) 0.60 (H) 1.19 (TM) p

Table 2.1: Cu Pseudopotential cutoff radii and reference components. (H) and (TM) stand for

Hamann (ref. [8]) and Troulliers–Martins (ref. [6]) schemes, respectively. All the pseudopotentials

are norm–conserving in the sense of Bachelet, Hamann and Schlüter[7], and have been produced

using a publicly available Fortran code [13].

2.2 Ground state properties

The first step is a self–consistent ground–state calculation, performed by minimizing

the DFT–LDA energy functional with a Car–Parrinello method [15], in a standard

plane–wave basis. The Ceperley–Alder [16] exchange–correlation energy and poten-

tial, as parametrized by Perdew and Zunger [17], have been used (test calculations

with the Hedin–Lundqvist form [18] have also been performed: see below). All pseu-
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Figure 2.1: Calculated total energy vs. lattice constant for bulk Cu. Panel (1): effect of the

kinetic energy cutoff at fixed number of k–points (28). Panel (2): effect of the IBZ sampling at

fixed Ecut (75 Ry.). Panel (3): effect of nonlinear core–corrections (see text). The reported values

for the equilibrium lattice constant and bulk modulus have been obtained from Murnaghan fits

(continuous curves). The experimental values are a=6.822 Bohrs and B=1.827 MBar [20].

dopotentials are used within the fully–separable Kleinman–Bylander scheme [10],

after checking that no ghost–states was present [9]. The irreducible wedge of the

Brillouin zone (IBZ) was sampled with the use of Monkhorst and Pack (MP) sets [19]

of Nk k–points. A very small fictitious electronic temperature (equal to ≈ 10 Kelvin)

was used in order to accelerate the convergence of the calculated Fermi surface (for

theoretical details see Ref. [14]). Convergence with respect to both the k–points

sampling and the kinetic energy cutoff has been checked extensively: Fig. 2.1 and

Table 2.2 show the results obtained for the “3d” pseudopotential. Ecut= 60 Ry. and

Nk= 28 appear to give well–converged, satisfactory results, with lattice constant a0

and Bulk modulus B0 within 1.4% of the experimental values. In the calculation

with NLCC, the energy cutoff had to be increased to 100 Ry, in order to describe

properly the core charge. NLCC reduce the underestimation of the experimental

lattice constant to 0.5 %, but they are found to be almost ininfluent on the band-
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PW cutoff (Ry) Nk a0 [Bohr] B0 [MBar]

75 10 6.77 1.73

75 28 6.73 1.79

75 60 6.74 1.83

60 28 6.73 1.83

100+NLCC 28 6.79 1.71

Expt. – 6.82 1.83

Table 2.2: Convergence of the calculated ground–state properties of bulk Cu.

structure, as well as on the resulting spectra (see below). Finally, calculations with

the “3s” pseudopotential, much deeper than the “3d” one, required an energy cutoff

of 140 Ry. Also in this case, the effect on the LDA bandstructure and spectra in

the energetic region of interest are found to be very small (see below).

In summary, as long as only the LDA 4s and 3d bandstructure is concerned, the

effect of the inclusion of 3s and 3p in the valence, (as well as the use of NLCC), are

mainly confined to a change of the equilibrium lattice constant, which induces an

indirect effect on the bandstructure energies [21].

2.3 LDA band structure

Fig. 2.2 summarizes the maximum relative energy differences induced by different

computational details on the LDA bandstructure; the value is taken at the bottom

valence in the Γ point (Γ1) and decreases gradually to zero at the Fermi level. By

changing Ecut from 60 Ry to 75 Ry the band-structure remains practically identical

(changes are less then 0.02 meV). At the 60 Ry cutoff, the band structure calculated

with the Ceperley-Alder parametrization of the exchange-correlation potential [16,

17] is compared with that obtained using the Hedin-Lundqvist parametrization [18];

in the latter case a maximum energy shift of about 0.15 eV is found.

The inclusion of NLCC yields, instead, a maximum upward shift of about 0.21 eV

with respect to the case without NLCC, mainly due to the change in the equilibrium

lattice constant. To study more deeply the effects of core polarization, a band-

structure calculation with the “3s” pseudopotential (see Section 2.1) was performed,

where the 3s and 3p core level relaxation is fully included in the selfconsistent run.

Also in this case the maximum bandshift with respect to the “3d” pseudopotential is

limited to about 0.2 eV. Hence, the results obtained with the “3d” pseudopotential
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at Ecut= 60 Ry. and using 28 MP k–points in the determination of the self–consistent

charge density can be considered to represent the converged LDA bandstructure of

bulk copper. Theoretical results are compared with the experimental photoemission

data in Fig. 2.3.

EPW
cut = 60 Ry

Γ1 EPW
cut = 75 Ry

Γ1
∆E = 0.014 eV

V CA
xc

∆E = 0.15 eV
V HL

xc

without NLCC

∆E = 0.214 eV

with NLCC

PP without 3s3p

∆E = 0.2 eV
PP with 3s3p

Figure 2.2: Summary of the effects of different computational details on the LDA bandstructure.

The energy differences reported are the maximum ones, and correspond to the bottom valence

band at the Γ point (Γ1). They decrease gradually to zero at the Fermi level.

At difference with the case of semiconductors, the disagreement between theory

and experiment is far from being limited to a rigid shift of the Kohn-Sham occupied

eigenvalues with respect to the empty ones. In fact, as also summarized in Table 2.3,

the widths of the d bands are systematically overestimated, a well-known failure of

LDA when applied to transition and noble metals [22].

2.4 Absorption spectrum: non–local pseudopo-

tentials and intraband transitions

In Section 1.1.1 I have showed the correct procedure to follow in order to obtain the

macroscopic (measured) optical properties starting from the microscopical electronic

properties of the medium. Keeping the q → 0 limit of Eq. (1.44) the absorption
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Figure 2.3: Bulk copper DFT-LDA bandstructure (full–line), compared with photoemission data

(points) from Ref. [1].

Experiment [1] Present work

Γ12 −2.78 −2.33

positions of d-bands X5 −2.01 −1.46

L3 −2.25 −1.69

Γ12 − Γ25′ 0.81 0.91

X5 −X3 2.79 3.23

widths of d-bands X5 −X1 3.17 3.70

L3 − L3 1.37 1.58

L3 − L1 2.91 3.72

positions of sp-bands Γ1 −8.60 −9.85

L2′ −0.85 −1.12

L-gap L1 − L2′ 4.95 4.21

Table 2.3: Comparison of Cu band widths and energy position with experimental values [1] at

high-symmetry points. All energies in eV.

spectrum is given by the imaginary part of the macroscopic dielectric function

εM (ω) = 〈〈ε−1
L (rr′, ω)〉〉−1

0 . (2.1)
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Now from Eq. (1.65) (using the fact that copper is a cubic material) we obtain

〈〈ε−1
L (rr′, ω)〉〉0 = 1 + lim

q→0

4π

|q|2χρρ (q, ω) , (2.2)

χρρ is the head (G = G′ = 0) of the Fourier components of the density–density

Green’s function that we will refer to simply as as χ in the following. To calculate χ

we must solve, via some approximation, the correlation effects due to the Coulomb

interaction. As observed in Section 1.3.1, the χ introduced in Eq. (2.2) is reducible

with respect to the Coulomb interaction. As long as we want to define an approxi-

mation for the interaction kernel Ξ̃ we can substitute χ with its irreducible part χ̃

Fourier by transforming Eq. (1.151)

χG G′ (q, ω) = χ̃G G′ (q, ω) +
∑

G′′

χ̃G G′′ (q, ω)
4π

|q + G′′|2χG′′ G′ (q, ω) . (2.3)

In this thesis we will not consider many–body effects on the two–body Green’s

function, so we approximate Ξ̃ = 0 substituting χ̃ with the RPA, non interacting

polarization χ0. As consequence

ε−1
0 0 (ω) = 1 + lim

q→0

4π

|q|2χG=0 G′=0 (q, ω) , (2.4)

χG G′ (q, ω) solution of the equation Eq. (2.3)

χG G′ (q, ω) = χ0
G G′ (q, ω) +

∑

G′′

χ0
G G′′ (q, ω)

4π

|q + G′′|2χG′′ G′ (q, ω) . (2.5)

Neglecting (for the moment) intraband transitions, χ0
G G′′ (q, ω) is given by:

χ0
G G′ (q, ω) =

1

2

∫

BZ

d3k

(2π)3

∑

n6=n′

〈n′k − q|e−i(q+G)·r|nk〉〈nk|ei(q+G′)·r′ |n′k − q〉

G0
he (n, n′,k,q, ω) , (2.6)

with

G0
he (n, n′,k,q, ω) = fn′ (k − q) (2 − fn (k))

[
1

ω + εn′ (k − q) − εn (k) + iη
− 1

ω + εn (k) − εn′ (k − q) − iη

]

. (2.7)

with 0 ≤ fn (k) ≤ 2 representing the occupation number summed over spin compo-

nents. The sums over k are transformed to integrals over the BZ, and the latter are

evaluated by summing over large sets of random points contained in the whole BZ.

Fully converged calculations with a small broadening require a very large number of
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Figure 2.4: Full line: imaginary part of the macroscopic dielectric function of Cu without Local-

Field effects and without including the non-local pseudopotential commutator [Eq. (2.11)], com-

pared with experimental data (squares) from[24]. Dot, dashed and long–dashed lines correspond

to the functions defined in Eq. (2.12) with n′ = 3, n′ = 4 and n′ = 5 respectively. All theoretical

curves are computed with Nk = 15, 386, and a Gaussian broadening of 0.15 eV (see text).

k-points [23]; the broadening used (and the corresponding number of k–points which

was found to be sufficient to ensure convergence) is specified explicitly for each one

of the reported spectra.

The simplest approach to the calculation of the absorption spectrum neglects

the full inversion of Eq. (2.5) (i.e., neglects Local Field Effects), and assumes

εM (ω) ≈ 1 − lim
q→0

4π

|q|2χG=0 G′=0 (q, ω) . (2.8)

The q → 0 limit for the oscillator strengths appearing in Eq. (2.6) is calculated in

the transverse gauge [25], within first order perturbation theory [26]

lim
q→0

〈n′k − q|e−iq·r|nk〉 = −iq · 〈φn′k−q| [r, H] |φnk〉
εn′ (k) − εn (k)

+O
(
q2
)
, (2.9)

where φnk (r) are the Bloch functions. Due to the non local character of the norm–

conserving pseudopotentials, the well-known relation between [r, H] and the mo-

46



mentum operator

[r, H] = p. (2.10)

must be substituted by:

[r, H] = p + [r, VNL] . (2.11)

The second term of the rhs of Eq. (2.11), which in simple metals and in many

semiconductors is small (and often neglected in practical calculations), becomes ex-

tremely important in the case of copper due to the large nonlocality of the PP. This

is demonstrated in Fig. 2.4 where the imaginary part of εM is calculated assuming

the validity of Eq. (2.10). The experimental absorption spectrum is severely under-

estimated between the offset of interband transitions (≈ 1.74 eV) and 5 eV. A better

analysis of this behavior can be performed by plotting the quantity

=m
[∑

k G0
he (n, n′,k,0, ω)

ω2

]

. (2.12)

with n = 6 and n′ = 3, 4, 5 (see Fig. 2.4). This quantity is the joint density of states

(JDOS) (divided by ω2) for transitions between the sixth band (d–like) and the third

to fifth bands (sp–like), and corresponds to assuming an oscillator strength equal to

one in Eq. (2.6).
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Figure 2.5: l–components of the radial part of VNL.
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Figure 2.6: Full line: imaginary part of the macroscopic dielectric function of Cu without Local-

Field effects and including the non-local pseudopotential commutator [Eq. (2.11)], compared with

experimental data (squares)[24].Nk and broadening as in Fig. 2.4.

We see that transitions in the energy range of interest (1.8 to 5.0 eV) exist, but

they are strongly suppressed due to the small values of the corresponding matrix

elements of p. Using both terms of Eq. (2.11), instead, the spectrum shown in

Fig. 2.6 is obtained, comparing much better with experiments. The large influence

of the non-local pseudopotential commutator on d→ s/p optical transitions can be

understood by writing explicitly the contribution of the second term of Eq. (2.11):

〈φ(s/p)k| [r, VNL] |φ(d)k〉 =
∑

l=s,p,d

∫∫

d rd r′φ∗
(s/p)k (r)

[
rV l

NL (r, r′) − V l
NL (r, r′) r′

]
φ(d)k (r′) , (2.13)

where V l
NL (r, r′) is the l-orbital component of the pseudopotential, and φ(s/p)k (r),

φ(d)k (r) are the s/p like and d like Bloch functions. Now approximating the sum in

Eq. (2.13) with the leading terms, we obtain:

〈φ(s/p)k| [r, VNL] |φ(d)k〉 ≈
∫∫

d rd r′
[
φ∗

(s/p)k (r) rV d
NL (r, r′)φ(d)k (r′)

−φ∗
(s/p)k (r) (V s

NL (r, r′) + V p
NL (r, r′)) r′φ(d)k (r′)

]
. (2.14)
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In the case of copper the l–components of the local, radial part of VNL are shown in

Fig. 2.5: the d component of the pseudopotential differ from the p component near

the origin by about 20 Hartrees, and this explain the strong influence on ε
′′

M (ω).

Despite the strong improvement of the agreement with experiment obtained in

Fig. 2.6, the theoretical curve exhibits an amplitude overestimation of about 20%

with respect to the experimental absorption spectrum.

This drawback must be analyzed taking into account both the physical approx-

imations involved in the theoretical approach, and the possible residual errors due

to the PP scheme. Concerning the first, the most important point is the neglection

of self–energy effects in the bandstructure calculation, and of excitonic effects in

the absorption process. Concerning the PP scheme, on the other hand, a possible

reason for the overestimation of the spectrum intensity could be related to the use

of pseudo–wavefunctions instead of the all–electrons ones in Eq. (2.6). This effect

has been studied in atoms by the authors of Ref. [27]: they found that PP calcula-

tions, even when the second term of rhs of Eq. (2.11) is correctly taken into account,

can be affected by a small residual error due to the difference between all-electron

wavefunctions and pseudo wavefunctions inside the core region. In the case of the

Cu atoms, 3d→ 4p transitions were found to yield a matrix element which was too

large by about 10% [27].

The effect of this overestimation of the 3d → 4p intra-atomic optical matrix

elements on the calculated bulk spectrum is, however, not obvious. To clarify this

point, an accurate comparison of the results obtained by using the “3d” and “3s”

pseudopotentials was performed, both in case of the bulk crystal and for the isolated

Cu atom.

Optical transitions AE ”3d“ PP ”3s“ PP

4s → 4p 1.732 1.738 1.713

3d → 4p 0.406 0.453 0.412

Table 2.4: Optical matrix elements for the Cu atom, calculated in the All-electrons (AE) scheme,

and with the pseudopotentials. Values are in atomic units.

For the latter case, the results are summarized in Table 2.4: while the “3d”

pseudopotential gives about the same results as those obtained in Ref. [27], the “3s”

PP reduces the error on the intra-atomic optical matrix elements to less than 1.5 %.

However in the case of the bulk crystal the amplitude of our calculated spectrum does

not change appreciably when results obtained with “3d” and “3s” pseudopotentials
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Figure 2.7: Effect of the use of a pseudopotential including the 3s and 3p shells in the valence on

the calculated ε
′′

(ω) for bulk Cu (full line : “3d” PP; dotted line: “3s” PP. See text). Due to the

large number of plane-waves required by the “3s” PP, the comparison is done using a small number

of k-points and a relatively large Gaussian broadening (Nk = 3, 000, γ = 0.2 eV). Local-Field effects

are neglected, and Eq. (2.11) is used.

are compared (see Fig. 2.7). This suggests that the overall intensity overestimation

cannot be ascribed to the use of PP wavefunctions in Eq. (2.6).

The reason for this discrepancy between theory and experiment should hence

be searched for within the physical approximations made, such as the neglection of

self-energy effects, will be included in the next chapter.

2.4.1 Intraband transitions

A peculiar characteristic of metals is the intra-band contribution to the dielectric

function, which, neglecting local field effects, is given by:

ε
′

intra (ω) ≡ 1

− lim
q→0

{

4π

|q|2
∑

n

∫

BZ

d3k

(2π)3 [fn (k − q) − fn (k)]
|〈nk|eiq·r|nk − q〉|2

ω + εn (k − q) − εn (k)

}

, (2.15)

with the n-sum restricted only to semi-occupied bands. In the case of copper only

the sixth band contributes to Eq. (2.15). Indicating this band with nF and using
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the relation

fnF
(k − q) − fnF

(k) = (fnF
(k − q) − fnF

(k))

{θ [fnF
(k − q) − fnF

(k)] − θ [fnF
(k) − fnF

(k − q)]}, (2.16)

time-reversal symmetry allows us to rewrite Eq. (2.15) as

ε
′

intra (ω) ≡ 1

− lim
q→0

{
8π

|q|2
∫

BZ

d3k

(2π)3 (fnF
(k − q) − fnF

(k)) θ [fnF
(k − q) − fnF

(k)]

|〈nk|eiq·r|nk − q〉|2 (εnF
(k) − εnF

(k − q))

ω2 − (εnF
(k) − εnF

(k − q))2

}

. (2.17)

In the small q limit, Eq. (2.17) yields the well-known Drude contribution to the

dielectric function

ε
′

intra (ω) ≡ 1 − ω2
D

ω2
+O

(
q2
)
, (2.18)

with

ω2
D = lim

q→0

{
8π

|q|2
∫

BZ

d3k

(2π)3 (fnF
(k − q) − fnF

(k)) θ [fnF
(k − q) − fnF

(k)]

|〈nk|eiq·r|nk − q〉|2 (εnF
(k) − εnF

(k − q))
}
. (2.19)

Since the theta function in Eq. (2.19) limits strongly the region of BZ that contributes

to the integral, the k-space sampling and the modulus of the chosen q vector used in

the numerical evaluation of Eq. (2.19) become two critical convergence parameters:

for a small |q| very few k-points will satisfy the condition [fnF
(k − q) − fnF

(k)] 6= 0.

In practice, |q| must be small enough to reproduce the q → 0 limit in Eq. (2.19), but

large enough to allow a suitable number of k-points to contribute to the sum. To

obtain a well converged ω2
D we found it necessary to use ≈ 16, 000 random k-points

in a region of the BZ such that εnF
(k) is contained within εFermi ± 0.1 eV. The

value used was |q| = 0.005 a.u.. A fictious electronic temperature was introduced to

smear out the Fermi surface, increasing the number of (k,k − q) pairs giving non

zero contributions to Eq. (2.19). In Table 2.5 we present our results as a function of

the fictious electronic temperature. The optical mass, defined as

mopt =

(
ωc

ωD

)2

with ωc =

√

4π

Ω
= 10.8 eV (2.20)

with Ω direct lattice cell volume, converges to 1.36, a value in good agreement with

the experiment [28].
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Tel [eV ] Number of intraband transitions ωD [ev] mopt

0.1 14,617 9.39 1.32

0.01 2,456 9.41 1.32

0.001 534 9.25 1.36

0.0001 310 9.28 1.36

0.00001 296 9.27 1.36

Table 2.5: Cu Drude plasma frequency and optical mass values obtained using different fictious

electronic temperatures; the experimental value for mopt is 1.35[28].

2.4.2 Local field effects

Local-Field effects are accounted for when the macroscopic dielectric function is

computed according to Eq. (2.1–2.5), i.e. by obtaining χG G′ (q, ω) as

χG G′ (q, ω) = χ0
G G′ (q, ω)

[

1 − 4π

|q + G|2χ
0
G G′ (q, ω)

]−1

, (2.21)

We explicitly divide χ0
G G′ (q, ω) into intraband and interband contributions:

χ0
G G′ (q, ω) = χinter

G G′ (q, ω) + χintra
G G′ (q, ω) , (2.22)

where the interband part is given by Eq. (2.6), while for the intraband contribution

we have to evaluate:

χintra
G G′ (q, ω) =

1

2

∫

BZ

d3k

(2π)3 〈nFk − q|e−i(q+G)·r|nFk〉〈nFk|ei(q+G′)·r′ |nFk − q〉

G0
he (nF , nF ,k,q, ω) . (2.23)

with G0
he (n, n′,k,q, ω) defined in Eq. (2.7). For G,G′ 6= 0 the oscillator strength is

calculated using Fast Fourier Transforms (FFT)

〈nk − q|e−i(q+G)·r|n′k〉 = 〈unk|e−iG·r|un′k〉 +O (q) , (2.24)

while for the G = G′ = 0 element of χinter we use Eq. (2.9).

The method presented in Section 2.4.1 for the calculation of ωD could, in prin-

ciple, be extended to χintra
G G′ (q, ω). Unfortunately the explicit calculation of χintra

for all the (G,G′) pairs is computationally prohibitive, due to the large number

of k-points required to reach convergence. To overcome these difficulties, we have

evaluated Eq. (2.23) on a limited number of k-points (a MP grid of 110 points in the

irreducible wedge). G0
he (nF , nF ,k,q, ω) is different from zero only for k very close
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Figure 2.8: Real and imaginary part of εM (ω) for bulk Cu with (full line) and without (dotted

line) inclusion of Local-Field effects, compared with experimental data (squares) from Ref.[24].

Theoretical spectra are computed with Nk = 110 (in the irreducible wedge of BZ), and a Lorentzian

broadening of 0.4 eV (see text).

to the Fermi Surface (which, in the grid, coincides with one particular point kF )

where fnF
(k − q) (2 − fnF

(k)) 6= 0. The oscillator strengths can be considered to

be almost constant in the vicinity of the Fermi Surface. The same ansatz cannot be

applied to G0
he (nF , nF ,k,q, ω); however we can use the property that near the Fermi

surface the metallic band dispersion of copper is well approximated by a free-metal

one, and make the following assumption for χintra
G G′ (q, ω):

χintra
G G′ (q, ω) ≈ 1

Ns

[
∑

R

〈nFRkF − q|e−i(q+G)·r|nFRkF〉

〈nFRkF|ei(q+G′)·r′ |nFRkF − q〉
]

π0 (q, ω) , (2.25)

where R is one of the Ns symmetry operations not in the point group of kF . π0 (q, ω)

is the non-interacting polarization calculated for a jellium model [29] with a density

nel yielding a classic plasma frequency ωp =
√

4πnel = 9.27 eV, corresponding to

the value of ωD calculated in Section 2.4.1.
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Figure 2.9: Imaginary part of the inverse macroscopic dielectric function of Cu including Local-

Field effects and the Drude contribution (full line). Dashed line: results without Local-Field effects;

Long-short dashes: with Local-Field effects, but without the Drude contribution. All theoretical

spectra are computed with the same Nk of Fig. 2.8 but with a Lorentzian broadening of 0.9 eV.

Points are the EELS data from Ref.[24].

π0 (q, ω) = − 1

2π2|q|

∫ kjel
F

|q|

0

dx x

(

1

ω − kjel
F |q| + iη

− 1

ω − kjel
F |q| − iη

)

. (2.26)

where

x =
ω

kjel
F |q|

. (2.27)

and

kjel
F =

(
rπ2nel

)1/3
. (2.28)

In Fig. 2.8 we compare our results for ε
′′

M(ω) with and without Local Field Effects.

The differences are small, consistent with the fact that, as expected, no large LFE

are present in a metal. However Local Field effects are more important on the

EELS spectrum, as shown in Fig. 2.9: in the high energy region the full inversion

of χG G′ (q, ω) matrix corrects an overestimation of the intensity. The inclusion of
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intraband transitions, on the other hand, turns out to be necessary not only to

describe correctly the behavior of ε
′′

at low frequencies, but also to improve the

agreement of the calculated ε−1(ω) with the experimental EELS data (Fig. 2.9).
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Chapter 3

Quasiparticle band structure of

Copper in the GW approximation

Experimental techniques for the determination of the electronic bandstructure of

solids have made considerable progress in recent years [1]. From the theoretical

point of view, state–of–the–art calculations within many–body perturbation theory,

described in Section 1.3.1, allow to obtain band energies in a rigorous way, i.e. as the

poles of the one–particle Green’s function G. We have seen that, to obtain G, one

needs the electron self-energy Σ, that here is evaluated according to the GW approx-

imation, as derived by Hedin in 1965 [2], and introduced in Section 1.3.4. However,

due to the high complexity and large computational requirements of ab–initio cal-

culations of Σ, the experimental bandstructures are often compared with the results

of (simpler) calculations performed within DFT–LDA. The consequences of this ap-

proach (which can be set on a firm ground by considering the exchange–correlation

potential of the LDA or GGA as an approximation to the self–energy operator)

must however be considered with great care, particularly when the system under

study differs from those – semiconductors and insulators – for which the approxima-

tion is usually made. In the last chapter we have found large deviations between

DFT–LDA and experimental bandstructure. This has been confirmed recently in

Ref. [1], where the measured Cu bandstructure is compared with state–of–the–art

DFT-GGA results: discrepancies between these data are found to be both large and

dependent on the considered band and k–point. As a consequence of this result, the

authors of Ref. [1] state that it is intriguing to find such pronounced “deviations

from the band theory”, copper being much less correlated than metals with an open

3d shell (e.g., Ni).

In the present chapter, I demonstrate that copper does not deviate from quasi-
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particle band theory. It only deviates from the simple “rigid shift” behavior of the

self–energy commonly found in the case of semiconductors and insulators.

The chapter is organized as follows: after a short introduction in Section 3.1

three main sections will provide the necessary theoretical tools (Section 3.2), the

numerical details (Section 3.3) and the results (Section 3.4).

3.1 Copper: a case study for noble metals

For semiconductors and insulators, the application of the GW method to computing

self–energy corrections on top of ab–initio DFT results has become a quite well-

established technique, giving energy levels generally in good agreement with exper-

iments, even for complicated systems like reconstructed surfaces and clusters [3, 4].

The gaps between empty and filled states generally increase by a substantial amount

with respect to those obtained in the Kohn-Sham (KS) formulation of DFT, reaching

agreement with experimental results. The KS–DFT underestimation of the exper-

imental gap is generally found to be weakly dependent on the particular band or

k–point, although some semiconductor surface gaps show a stronger QP corrections

than the bulk ones [5]. This is the basis for the introduction of the so–called “scis-

sors operator”, often invoked in order to correct the discrepancies by rigidly shifting

upwards the DFT empty bands, hence avoiding explicit self–energy calculations. A

priori, there is no reason why the “scissors” approach should also work for metals,

where no gap exists between filled and empty states.

Unlike semiconductors, the case of metals has received limited attention so far.

The band width (i.e., the energy range of filled states) of simple metals has often been

compared with that calculated for the homogeneous electron gas (jellium), finding

discrepancies of a few tenths of eV [6]. On the other hand, the band structure

of transition and noble metals cannot be approximated by that of jellium: valence

electrons of d character play an important role both in the electronic structure and in

the optical properties of these metals. Previous estimates of many–body corrections

to the 3d Cu bandstructure, based on the self–energy of the homogeneous electron

gas, yielded only partial agreement with the experimental data, suggesting that in

the case of non–free electron metals screening effects (accounted for by the dielectric

function) should be included in a more realistic way [7].

Among transition metals, full quasiparticle calculations have been carried out

so far only for Ni [8], where GW yields a good description of photoemission data,

except for the 6 eV satellite, which is due to strong short–range correlations within

60



the partially–filled d–shell. From the computational point of view, the very presence

of strongly localized d–bands makes the ab–initio calculations based on plane waves

(PW) and norm–conserving pseudopotentials (NCPP) for noble metals much heavier

than those for semiconductors.

Let us first recall the relations between Kohn–Sham eigenvalues, the poles of

the one–particle Green’s function G, and experimental band energies as measured

in photoemission (PE) or inverse photoemission (IPE) (described in Chapter 1).

In DFT, KS eigenvalues appear as Lagrange multipliers to ensure wavefunction

orthonormality in the minimization of the energy functional. In contrast to the

Hartree-Fock case, their values cannot be identified with electron addition or re-

moval energies, since there is no equivalent of Koopman’s theorem in DFT. Instead,

the experimental bandstructure should be compared with the poles of the Green’s

Function G (r, r′;ω). Within many–body theory, the KS energies and wavefunctions

ψnk (r) are substituted with the quasiparticle one εQP
nk and ψQP

nk (r) solution of

[

−4r

2
+ Vext (r) + VH (r)

]

ψQP
nk (r, ω)

+

∫

dr′ Σ (r, r′;ω)ψQP
nk (r′, ω) = Enk (ω)ψQP

nk (r, ω) , (3.1)

with Enk

(

εQP
nk

)

= εQP
nk . Eq. (3.1) contains the non-local, non-hermitian and fre-

quency dependent self-energy operator Σ

Σ (r, r′, t) = Σx (r, r′) +M (r, r′, t) , (3.2)

Σx (r, r′) = iν (r, r′)G0

(
r, r′, t = 0−

)
, (3.3)

M (r, r′, t) = iW̃ (r, r′, t)G0 (r, r′, t) = i

[∫

dr
′′

ν
(

r, r
′′

)

ε−1
(

r′, r
′′

, t
)]

G0 (r, r′, t) ;

(3.4)

where W̃ is not the full screening function but only its frequency dependent part

W̃ (r, r′, t) =

∫

dr
′′

ν
(

r, r
′′

)

ε−1
(

r′, r
′′

, t
)

. (3.5)

Similarly for ε

ε−1 (r, r′, t) =

∫

dr
′′

ν
(

r, r
′′

)

χ
(

r
′′

, r′, t
)

. (3.6)

with χ (r, r′, t) given in Eq. (2.5).

Eq. (3.1) is formally similar to the Kohn-Sham equations which are solved in the

determination of the ground-state properties, but where the local and energy inde-

pendent exchange-correlation potential Vxc (r) has been substituted by Σ. Hence,
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KS eigenvalues can be considered as a zeroth-order approximation to the true QP

energies, if the exchange-correlation (xc) potential of the DFT is seen as an approx-

imation to the true self-energy operator Σ.

3.2 Theoretical framework

3.2.1 Exchange self energy

In order to solve Eq. (3.1) we need the matrix elements of the Mass operator and the

exchange self-energy. If we expand the KS field operator in terms of Bloch functions

{φnk (r)} (with k restricted to the Brillouin zone (BZ) ) the Fourier transform of

the Green’s function G0 (r1, r2, t) is

G0 (r1, r2;ω) = 2
∑

n

∑

k∈BZ

φnk (r1)φ
∗
nk (r2)

[
fnk

ω − εnk − iδ
+

1 − fnk

ω − εnk + iδ

]

(3.7)

where |fnk| ≤ 1 denoting the electronic occupation and δ = 0+. From Eq. (3.3),

Σx (r1, r2) = − 1

|r1 − r2|
∑

n1

∑

k1∈BZ

[
φn1k1

(r1)φ
∗
n1k1

(r2) fn1k1

]
. (3.8)

Using the Fourier expansion of Coulomb potential

1

|r1 − r2|
=

∫

BZ

dq

(2π)3

∑

G

ei(q+G)·(r1−r2) 4π

|q + G|2 , (3.9)

(where G represents a Reciprocal Lattice (RL) vector) we get

〈nk|Σx (r1, r2) |n′k′〉 =

∫

dr1 dr2 φ
∗
nk (r1) Σx (r1, r2)φn′k′ (r2)

= −
∑

n1

∑

k1∈BZ

∫

BZ

dq

(2π)3

∑

G

4π

|q + G|2

〈nk|ei(q+G)·r1 |n1k1〉〈n1k1|e−i(q+G)·r2 |n′k′〉fn1k1
; (3.10)

with

〈nk|ei(q+G)·r1 |n1k1〉 =

∫

dr1 u
∗
nk (r1)un1k1

(r1) e
i(k1−k+q+G)·r1 , (3.11)

〈n1k1|e−i(q+G)·r2 |n′k′〉 =

∫

dru∗n1k1
(r2)un′k′ (r2) e

−i(k1−k′+q+G)·r2 . (3.12)

where unk (r) is the periodic part of the Bloch function. On changing the integration

variable in Eq. (3.11) from r to r + R, R being a vector of the direct lattice (DL),

we get the conditions

k1 − k + q = G (3.13)

k1 − k′ + q = G′ (3.14)
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from these two conditions it follows that

k = k′ + G − G′, (3.15)

but if k and k′ are inside the BZ we get

G = G′ = Gkq ≡
(
k − q

)
− (k − q) . (3.16)

where
(
k − q

)
is the vector (k − q) translated into the BZ. Finally we obtain

〈nk|Σx (r1, r2) |n′k〉

= −
∑

n1

∫

BZ

dq

(2π)3

∑

G

4π

|q + G|2 ρ̃nn1
(k,q,G) [ρ̃n′n1

(k,q,G)]∗ fn1(k−q), (3.17)

with

ρ̃nn1
(k,q,G) =

∫

dru∗nk (r) un1(k−q) (r) ei(G+Gkq)·r. (3.18)

3.2.2 The screening function

To obtain the matrix elements of the mass operator define in Eq. (3.4) we need the

function ε−1 (1, 2) and the response function χ (1, 2) that we expand in plane waves

ε−1 (r1, r2; t) =

∫

BZ

dq

(2π)3

∑

G,G′

ei(q+G)·r1ε−1
G,G′ (q, t) e

−i(q+G′)·r2 , (3.19)

χ (r1, r2; t) =

∫

BZ

dq

(2π)3

∑

G,G′

ei(q+G)·r1χG,G′ (q, t) e−i(q+G′)·r2 . (3.20)

The plane wave components of χ (r1, r2; t) can be calculated with Eq. (1.151) that

now has the form

χG,G′ (q, ω) = χ0
G,G′ (q, ω) +

∑

G′′

χ0
G,G′′ (q, ω)

4π

|q + G′′|2χG′′,G′ (q, ω) , (3.21)

where χ0
G,G′ (q, ω) is

χ0
G,G′ (q, ω) = −i

∫

dr1 dr2 e
i(q+G)·r1e−i(q+G)·r2

[∫
dω′

2π
G0 (r1, r2;ω

′)G0 (r2, r1;ω
′ − ω)

]

= 2
∑

n n′

∑

k∈BZ

[ρ̃nn′ (k,q,G)]∗ ρ̃nn′ (k,q,G′)

[
fn′(k−q) (1 − fnk)

]
[

1

ω − εnk + εn′(k−q) + iδ
− 1

ω − εn′(k−q) + εnk − iδ

]

. (3.22)
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Note that χ0
G,G′ (q, ω) is an odd function in ω as a consequence of time-reversal sym-

metry and in the q → 0 limit both intraband and interband transitions are included

following the method discussed in Section 2.4.1. Inverting Eq. (3.21), χG,G′ (q, ω) is

used to construct ε−1
G,G′ (q, ω)

ε−1
G,G′ (q, ω) =

4π

|q + G|2χG,G′ (q, ω) , (3.23)

but we introduce a more symmetric definition

ε̃−1
G,G′ (q, ω) =

4π

|q + G||q + G′|χG,G′ (q, ω) =
|q + G|
|q + G′|ε

−1
G,G′ (q, ω) , (3.24)

so that the square bracketed term in Eq. (3.4) is
[∫

d3 ν (1, 3) ε̃−1 (2, 3)

]

=

∫

BZ

dq

(2π)3

∑

G,G′

ei(q+G)·r1 ε̃−1
G,G′ (q, t1 − t2)

4π

|q + G||q + G′|e
−i(q+G′)·r2 . (3.25)

The last step is the convolution of Eq. (3.25) with the KS Green’s function G0 (1, 2)

〈nk|M (r1, r2, ω) |n′k′〉

= i
∑

n1

∫

BZ

dq

(2π)3

{
∑

G,G′

4π

|q + G′|2 ρ̃nn1
(k,q,G) [ρ̃n′n1

(k,q,G′)]
∗

∫
dω′

2π
ε̃−1
G,G′ (q, ω

′)

[
fn1(k−q)

ω − ω′ − εn1(k−q) − iδ
+

1 − fn1(k−q)

ω − ω′ − εn1(k−q) + iδ

]}

. (3.26)

To evaluate the frequency integral we must investigate deeper the analytic properties

of the Lehman representation of of ε̃−1
G,G′ (q, ω),

ε̃−1
G,G′ (q, ω) =

∑

I

[

R
(+)
I (q,G,G′)

ω − EN
I + iδ

− R
(−)
I (q,G,G′)

ω + EN
I − iδ

]

, (3.27)

with

R
(+)
I (q,G,G′) =

∫

dr dr′ ei(q+G)·ri〈ΨN |ρ̂ (r) |ΨI
N〉〈ΨI

N |ρ̂ (r′) |ΨN〉e−i(q+G)·r′ ,

(3.28)

R
(−)
I (q,G,G′) =

∫

dr dr′ ei(q+G)·ri〈ΨN |ρ̂ (r′) |ΨI
N〉〈ΨI

N |ρ̂ (r) |ΨN〉e−i(q+G)·r′ .

(3.29)

where |ΨI
N〉 is the N-electrons interacting excited states with energy EN

I . Now

χ0
G,G′ (q, ω) is an odd function of ω, and from Eq. (3.21) it follows that χG,G′ (q, ω)

(and hence ε̃−1
G,G′ (q, ω)) has the same property; so we get

R
(+)
I (q,G,G′) = R

(−)
I (q,G,G′) ≡ RI (q,G,G′) . (3.30)
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Moreover, as consequence of the spatial inversion symmetry it follows

RI (q,G,G′) = [RI (q,G,G′)]
∗
. (3.31)

The residues of Eq. (3.27) of ε̃−1
G,G′ (q, ω) are real, thus

ε̃−1
G,G′ (q, ω) = − 1

π

∫ ∞

0

dω′

[

=
[
ε̃−1
G,G′ (q, ω)

]

ω − ω′ + iδ
−

=
[
ε̃−1
G,G′ (q, ω)

]

ω + ω′ − iδ

]

. (3.32)

Eq (3.32) states that for systems with time and spatial inversion symmetry the

“δ–like” part of ε̃ coincides with its imaginary part. Finally from Eq. (3.32) and

Eq. (3.26) we obtain

〈nk|M (r1, r2, ω) |n′k′〉 = −
∑

n1

∫

BZ

dq

(2π)3

[∫ ∞

−∞

dω′ Γh (nn1n
′,k − q, ω′)

ω − ω′ − εn1(k−q) + iδ

+

∫ ∞

−∞

dω′ Γe (nn1n
′,k − q, ω′)

ω − ω′ − εn1(k−q) − iδ

]

; (3.33)

with

Γh (nn1n
′,k − q, ω′) = 2

∑

G,G′

ρ̃nn1
(k,q,G) [ρ̃n′n1

(k,q,G′)]
∗

2fn1(k−q)

|q + G||q + G′|=
[
ε̃−1
G,G′ (q, ω)

]
θ (ω) , (3.34)

Γe (nn1n
′,k − q, ω′) = 2

∑

G,G′

ρ̃nn1
(k,q,G) [ρ̃n′n1

(k,q,G′)]
∗

2
(
1 − fn1(k−q)

)

|q + G||q + G′|=
[
ε̃−1
G,G′ (q, ω)

]
θ (−ω) . (3.35)

Γe/h (ω) are functions with a well defined energy range {−Ωmax,Ωmax}:

Ωmax ≡Max{εnk − εn1(k−q)} ∀n, n′,k,q with fnk

(
1 − fn1(k−q)

)
6= 0. (3.36)

However, for systems without spatial inversion symmetry Γe/h (ω) could have high

energy tails, requiring a more careful integration of Eq. (3.32).

3.3 Numerical details

Our bandstructure calculation starts with a DFT-LDA calculation of the ground-

state properties, performed using norm-conserving pseudopotentials (PPs) and a

plane waves basis. As shown in Chapter 2, the use of soft (Martins-Troullier [9])
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PPs allows us to work at full convergence with a reasonable kinetic energy cutoff,

i.e., 60 Rydbergs if the 3s and 3p atomic states are frozen into the core, 160 Rydbergs

when they are explicitly included into the valence.

Most GW calculations on semiconductor systems use a Plasmon-Pole Approxi-

mation (PPA) for W (ω) [10], based on the observation that the Fourier components

ε−1
G,G′ (q;ω) of the inverse dielectric function are generally peaked functions of ω,

and can be approximated by a single pole. Since the evaluation of Σc involves an

integration over the energy, the fine details of the ω-dependence are not critical, and

the PPA turns out to work reasonably well for most applications. However, in the

case of Cu the use of a PPA becomes more critical. The presence of flat d–bands

2 eV below the Fermi level implies the presence of strong transitions in ε−1
G,G′ (q;ω)

spread over a large energy range. For small values of G and G′, the behavior of

ε−1
G,G′ (q;ω) is often very different from that of a single-pole function, leading to

instabilities when determining the Plasmon-Pole parameters. More precisely the

PPA, for any (G,G′,q) component of ε−1, reproduces the real part of the matrix at

two frequencies. The higher frequency is chosen in order to reproduce correctly the

energy tail of ε−1 (ω), and consequently of W (ω). The other frequency, however, is

chosen at the origin whereby the presence of flat d–bands a few eV below the Fermi

level induces large values in ε−1
G,G′ (q; 0). As a consequence, the plasma resonance

obtained within the PPA can be found below the total band width energy (∼ 10 eV).

In these cases the self–energy is no longer well defined for all the energies because

some of its (isolated) poles fall within the band width.

Hence, I have found it more convenient to avoid the PPA. Instead, ε−1
G,G′ (q;ω)

is explicitly computed over a grid of about 200 frequencies from zero to ∼130 eV

and the energy integral is numerically performed. Another characteristic of metallic

systems which leads to additional difficulties in practical GW calculations is the

discontinuity of the band occupation crossing the Fermi surface. This problem

already shows up in the evaluation of the bare exchange matrix elements that we

will face in the next section.

Performing a full screening calculation also the imaginary part of Σ will be

accessible. Further evidence of the limitations imposed by the PPA in the case of

Cu will be the role played by the imaginary part of the renormalization factors in

the quasiparticle energies.
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3.3.1 Exchange self-energy: Fermi surface effects

Among all the numerical parameters one of the most important is the k-point and

the corresponding q-point grid; we have left the q-space integral in Eq. (3.17)

〈nk|Σx (r1, r2) |n′k〉 =

−
∑

n1

∫

BZ

dq

(2π)3

∑

G

4π

|q + G|2 ρ̃nn1
(k,q,G) [ρ̃n′n1

(k,q,G)]∗ fn1(k−q), (3.37)

because the approximation of the integral with a q-point grid is based on the fun-

damental “ansatz” that the integrated function is constant in a region of the BZ

centered around each q-point (that we indicate as {qi} for i = 1 . . . Nq) of volume

(2π)3 / (NqΩ)

〈nk|Σx (r1, r2) |n′k〉

≈ −
∑

n1

(2π)3

NqΩ

∑

qi

∑

G

4π

|qi + G|2 ρ̃nn1
(k,qi,G) [ρ̃n′n1

(k,qi,G)]∗ fn1(k−qi). (3.38)

Unfortunately, in metallic systems like Cu, this ansatz is not correct for the discon-

tinuity of fn1(k−qi) induced by the Fermi surface. This “Fermi Surface effect” can

be understood with a simple two-dimensional example: in Fig. 3.1 the upper-right

quadrant of a square BZ is shown together with two different uniform sets of k-

points (indicated by full and empty circles). The uniformity of the two grids allows

us to divide the BZ in regions, called Rki
, centered around each k-point, that cover

the whole BZ without overlapping; the thick (thin) lines enclose the regions related

to empty (full) circles grid. A spherical Fermi line is introduced and the dark gray

region is the approximated Fermi Surface defined by

fnk = fnki
6= 0 for k ∈ Rki

(3.39)

for the larger k-points set while the light gray region joined with the dark one

is relative to the smaller set. We see immediately that a large difference in the

definition of the Fermi Surface (the Fermi volume in the three-dimensional case) is

introduced and, as we will see, this corresponds to a large numerical error in the

matrix elements of the exchange self-energy near the Fermi level.

To avoid this numerical error we rewrite Eq. (3.38) as

〈nk|Σx (r1, r2) |n′k〉 ≈ −
∑

n1

∑

qi

∑

G

{ρ̃nn1
(k,qi,G) [ρ̃n′n1

(k,qi,G)]∗

[∫

BZ′(qi)

dq

(2π)3fn1(k−q)
4π

|q + G|2
]}

. (3.40)
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Figure 3.1: Fermi Surface effects due to the discretization of the RL space integration, as ex-

plained in the text.

The ansatz about the continuity of the integrated function of Eq. (3.37) is restricted

here only to the ρ̃nn′ factors, while for the occupation numbers and for the Fourier

components of the Coulomb interaction, the integration over the q-space is divided

into Nq integrations in the regions named BZ ′ (qi). These regions must be carefully

defined so to cover the BZ without overlapping; a simple procedure can be carried

out in the case of a uniform q-grid where the grid is itself a Bravais lattice and the

BZ ′ (qi) are the Brillouin Zones of this small lattice.

Numerically we define the integrals

Be (n1,k,qi,G,G
′) =

∫

BZ′(qi)

dq

(2π)3fn1(k−q)
1

|qi + G||qi + G′|

=

∫

BZ′(Γ)

dq

(2π)3fn1(k−q−qi)
1

|q + qi + G||q + qi + G′| , (3.41)

which we calculate by generating Nr random q-points {Qi} inside the small Brillouin

Zone BZ ′ (Γ) centered around q = 0

Be (n1,k,qi,G,G
′) ≈ (2π)3

NqΩNr

∑

j=1...Nr

fn1(k−Qj−qi)
1

|Qj + qi + G||Qj + qi + G′| .

(3.42)

68



The fn1(k−Qj−qi) are fitted with the occupation numbers of a set of 13, 050 random

k-points chosen near the Fermi surface whose energies were calculated within DFT-

LDA.

We have found that convergence in the matrix elements of Σ̂x is reached using

106 random q-points in Eq. (3.42) and a numerical lighter version of Eq. (3.40),

〈nk|Σx (r1, r2) |n′k〉
≈ − (2π)

∑

n1

∑

qi

ρ̃nn1
(k,qi,G) [ρ̃n′n1

(k,qi,G)]∗Be (n1,k,qi,0,0)

+
∑

n1

(2π)3

NqΩ

∑

qi

∑

G6=0

ρ̃nn1
(k,qi,G) [ρ̃n′n1

(k,qi,G)]∗
4πNe (n1,k,qi)

|q + G|2 , (3.43)

where the time-consuming calculation of Eq. (3.42) is restricted to G = G′ = 0 and

a new function Ne (n1,k,qi) is introduced,

Ne (n1,k,qi) =
(2π)3

NqΩNr

∑

j=1...Nr

fn1(k−Qj−qi). (3.44)

In the following we will refer to Eq. (3.43) as the “Random Integration Method”

(RIM).

without RIM with RIM

Point 19 {qi} 44 {qi} 19 {qi} 44 {qi}
X1 −23.17 −23.27 −25.26 −25.34

X3 −25.10 −25.26 −26.63 −26.69

X2 −25.13 −25.05 −28.07 −28.15

X5 −25.44 −25.50 −27.37 −27.39

X4 −8.31 −8.58 −9.59 −9.65

Table 3.1: Comparison of diagonal matrix elements of Σ̂x at the X point for the first 5 bands (the

fifth is a metallic band). The first two columns use Eq. (3.38) with 19 and 44 q-points respectively,

while the last two columns use Eq. (3.43). In the case of Eq. (3.38) a spherical region around q = 0

is used to avoid the singularity of the Coulomb potential.

To test this procedure we have used two sets of Monkhorst-Pack [11] k-points : 10

and 28 points in the irreducible wedge of Brillouin zone (IBZ). Each set corresponds

to a q-point grid constructed by all the possible differences of k-points, namely 19

points for the first set and 44 for the second set. Both q-point grids are of BCC

Bravais lattice type so the regions BZ ′ (qi) differ only in volume. The number of

G vectors included are 1395 while the wave functions of Cu contain a maximum of
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600 plane–waves. In Table 3.1 the values of 〈nk|Σx (r1, r2) |nk〉 at the X k-point

for the first five bands are reported both with and without the RIM. From the

comparison of the two methods two conclusions can be drawn:(a) using the RIM

the discrepancy between the matrix element of Σ̂x for the sixth band X4 calculated

with the two sets of q-points decreases considerably, (b) the overall intensity of the

matrix elements decreases. While the first point occurs as a direct consequence of

the correct inclusion of the Fermi surface discontinuity the latter depends on the

integration of the Coulomb potential inside the regions BZ ′ (qi). Finally, we can

affirm that with the random integration method the matrix elements of Σ̂x are well

converged with 19 q-points in the IBZ.

The same method used for Σ̂x must be extended to the matrix elements of the

mass operator; Eqs. (3.33), (3.34) and (3.35) are replaced with

〈nk|M (r1, r2, ω) |n′k〉 = −
∑

n1

∑

qi

[∫ ∞

−∞

dω′ Γh (nn1n
′,k − qi, ω

′)

ω − ω′ − εn1(k−qi) + iδ

+

∫ ∞

−∞

dω′ Γe (nn1n
′,k − qi, ω

′)

ω − ω′ − εn1(k−qi) − iδ

]

, (3.45)

with

Γh (nn1n
′,k − qi, ω

′)

= 2ρ̃nn1
(k,q,0) [ρ̃n′n1

(k,q,0)]∗Bh (n1,k,qi,0,0)=
[
ε̃−1
G,G′ (q, ω)

]
θ (ω)

+ 2
∑

G6=0,G′ 6=0

ρ̃nn1
(k,q,G) [ρ̃n′n1

(k,q,G′)]
∗ 4πNh (n1,k,qi)

|q + G|2 =
[
ε̃−1
G,G′ (q, ω)

]
θ (ω) ,

(3.46)

Γe (nn1n
′,k − qi, ω

′)

= 2ρ̃nn1
(k,q,0) [ρ̃n′n1

(k,q,0)]∗Be (n1,k,qi,0,0)=
[
ε̃−1
G,G′ (q, ω)

]
θ (−ω)

+2
∑

G6=0,G′ 6=0

ρ̃nn1
(k,q,G) [ρ̃n′n1

(k,q,G′)]
∗ 4πNe (n1,k,qi)

|q + G|2 =
[
ε̃−1
G,G′ (q, ω)

]
θ (−ω) .

(3.47)

Two new quantities were introduced

Bh (n1,k,qi,G,G
′) ≈ (2π)3

NqΩNr

∑

j=1...Nr

(

1 − fn1(k−Qj−qi)

)

4π

|Qj + qi + G||Qj + qi + G′| , (3.48)
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Nh (n1,k,qi) =
(2π)3

NqΩNr

∑

j=1...Nr

(

1 − fn1(k−Qj−qi)

)

. (3.49)

An approach similar to the RIM introduced so far has been used by Pulci [5] to

improve the q–grid convergence of 〈Σx〉 for GW calculations of surface bands cor-

rections. The present treatment, however, also solves the discontinuity induced by

the metallic Fermi surface.

3.3.2 Matrix elements of the mass operator

Convergence tests

Using the q-grid chosen for the Σ̂x matrix elements in Section 3.3.1, other numer-

ical parameters must be set for the matrix elements of mass operator defined in

Eq. (3.45).

- Plane Waves: While the matrix elements of Σ̂x converge with a number

of plane waves higher then that used for wave functions we have converged

Eq. (3.45) to within 10 meV using only 307 plane waves (the same number of

plane–waves are used to invert Eq. (3.23)). However we found crucial to use

a direct space grid during Fast Fourier Transformation (FFT) that was large

enough to preserve wave function orthonormalization.

- Bands: Band summation enters at two different points of our calculation:

the first is in the definition of χ0
G,G′ (q, ω), Eq. (3.21), where it is found that

higher the number of bands used the higher the energy cut-off on the possible

hole-electron excitations accessible to the system. The numerical weight of the

whole GW calculation increases rapidly with the number of bands included

in the calculation of χ0
G,G′ (q, ω). We have chosen 40 bands (corresponding to

a cutoff of about 130 eV on the electron–hole excitation energies) looking at

the Electron Energy Loss Spectrum (EELS) whereby the main structures are

localized at about 30 eV, a region that, on comparing with experiment, is well

described by theoretical calculations as shown in Section 2.4.2.

Eq. (3.45) displays a second band summation (over n1): these bands determine

the energy cut-off on the intermediate states involved in the screened exchange

and should be high enough to correctly describe the long range behavior of

the real part of the self-energy. We have found that 100 bands (corresponding

to an energy cut-off of about 300 eV) are enough to obtain matrix elements of

the mass operator converged to within 10 meV.
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- k-grid: For the construction of χ0
G,G′ (q, ω) we need to define a k-grid that

can, in principle, be different from that used to integrate the self-energy. We

have used a k-points grid obtained joining a MP grid of 10 k-points in the IBZ

and its copy expanded in the BZ and then shifted in the origin, that, reduced

in the IBZ, gives other 19 k-points.

- Frequency grid: the main difference between a Plasmon-Pole and our full

screening calculation is the possibility that the former may reduce to an an-

alytic form for the correlation part of the Self-energy. On the other hand,

in Eq. (3.45) we must evaluate a frequency integral on a discrete frequency

grid. The screening function of Cu is characterized by the absence of any well

defined sharp plasmon peak, and so a relatively small number of frequency

points is sufficient to obtain a full converged frequency integral. We have di-

vided the energy range of hole-electron excitation energies (130 eV) into 100

steps, together with a lorentzian broadening of 0.1 eV in χ0
G,G′ (q, ω) with δ

in Eq. (3.45) set to 0.01 eV. We have tested different grid constructions and

the Lorentzian broadening of either the screening function and the KS Green’s

function, and obtained well converged final results for the quasiparticle ener-

gies.

The convergence tests done for Σ̂x matrix elements in Section 3.3.1 have showed

that with a grid of 19 q-points in the IBZ, convergence is reached to within 0.1 eV;

this numerical error is conserved in

〈nk|Σx (r1, r2) +M (r1, r2, ω) |n′k〉 (3.50)

due to the rather small errors found in the matrix elements of the mass operator.

Off–diagonal matrix elements

So far we have used a matrix notation for the mass and bare–exchange operator.

However, off–diagonal matrix elements of Σ̂x are found to be negligible with respect

to the diagonal one.

If we consider the first four occupied bands at the X point, the M (r1, r2;ω)
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matrix elements calculated at the quasiparticle energies εQP
nX are

〈nX1|M (r1, r2;−4.91 eV ) |n′X1〉 =









−0.8747 0.0002 0.0022 −0.0018

0.0002 0.5864 0.0006 −0.0064

0.0017 0.0004 5.3815 0.0012

−0.0016 −0.0064 0.0016 5.7892









eV

(3.51)

〈nX3|M (r1, r2;−4.51 eV ) |n′X3〉 =









−1.1661 0.0002 0.0020 −0.0017

0.0002 0.2510 0.0006 −0.0062

0.0018 0.0004 5.2115 0.0012

−0.0016 −0.0062 0.0015 5.5833









eV

(3.52)

〈nX2|M (r1, r2;−2.28 eV ) |n′X2〉 =









−2.6320 0.0001 0.0016 −0.0014

0.0001 −1.3222 0.0004 −0.0052

0.0016 0.0004 3.2510 0.0012

−0.0014 −0.0052 0.0012 3.7660









eV

(3.53)

〈nX4|M (r1, r2;−2.03 eV ) |n′X4〉 =









−2.7546 0.0002 0.0016 −0.0014

0.0001 −1.4540 0.0004 −0.0051

0.0016 0.0004 3.0853 0.0011

−0.0014 −0.0051 0.0011 3.5975









eV

(3.54)

From these matrices we see that the off–diagonal elements of mass–operator are also

rather small. However, when compared with those of Σ̂x, the ratio with the diagonal

elements is higher; not enough, of course, to induce any effect on the DFT–LDA

wave–functions.

This can be considered as the proof, in the case of copper, of the identity be-

tween DFT–LDA and quasiparticle wavefunctions. Consequently, the quasiparticle

energies are solution of the scalar motion equation

[

−4r

2
+ Vext (r) + VH (r)

]

ψnk (r, ω)

+

∫

dr′ Σ (r, r′;ω)ψnk (r′, ω) = Enk (ω)ψnk (r, ω) , (3.55)
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Point εnk Σnk
x − V nk

xc Mnk (εnk) εQP
nk − εnk

X1 −5.10 −4.27 8.50 4.23

X3 −4.63 −3.89 8.90 5.01

X2 −1.59 −2.29 7.79 5.50

X5 −1.40 −1.49 7.11 5.62

X4 1.44 2.41 −2.70 −0.30

Table 3.2: Approximated quasiparticle corrections at the point X (following Eq. (3.60) shown

together with separate matrix elements of bare exchange minus exchange-correlation potential and

mass operator.

that when averaged, reduces to the simple form

εQP
nk − εnk = Σnk

x +Mnk

(

εQP
nk

)

− V nk
xc , (3.56)

where

Σnk
x ≡ 〈nk|Σx (r1, r2) |nk〉, (3.57)

Mnk (ω) ≡ 〈nk|M (r1, r2, ω) |nk〉, (3.58)

V nk
xc ≡ 〈nk|Vxc (r) |nk〉. (3.59)

Role of 3s/3p core levels

Normally (e.g., in GW calculations for semiconductors), the calculation of G and

W to correct the DFT valence bandstructure can be performed by including only

valence states, and fully neglecting the core states which have been frozen in the

pseudopotential approach. In copper, however, when Σ is computed neglecting the

3s and 3p atomic core states (which in the solid create two flat bands, at about 112

and 70 eV, respectively, below the Fermi level), the resulting QP corrections on the

d-bands are clearly nonphysical. This is evident looking at the approximate solution

of Eq. (3.56)

εQP
nk − εnk ≈ Σnk

x +Mnk (εnk) − V nk
xc . (3.60)

In Table 3.2 these quasiparticle corrections are shown for the first five non degenerate

bands at point X. Quasiparticle corrections are too large; a conclusion that remains

after any more accurate solution of Dyson Equation. The reason for these results

must be found in the comparison of Mnk (εnk) and
(
Σnk

x − V nk
xc

)
at X4 with the same

quantities evaluated for example, at X1: we see that while for X4 (a s/p-like state)
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the correlation part is of the same order of the static one at X1 (a d-like state),

the mass operator is much larger then
(
Σnk

x − V nk
xc

)
. From one point of view that

is the first evidence of the strong correlation felt by the d-like states, but on the

other hand something prevents the static part of self-energy to balance the strong

correlation contribution.

Further evidence of the anomalous behavior of static part of self-energy is the

similarity between
(
Σnk

x − V nk
xc

)
for Cu and Si [12] as shown in Fig. 3.2: the com-

parison shows that in the case of Cu there’s no evidence of the localization of the d

orbitals of Cu that, however, is fully present in the matrix elements of mass operator.

−10 −6 −2 2 6 10
εnk [eV]

−7

−4

−1

2

5

8

Σ xnk
−

V
xc

nk
  [e

V
]

Figure 3.2: Left Frame:
(
Σnk

x − V nk

xc

)
values plotted as function of the non-interacting energies

εnk for Copper (—) and for Silicon (· · · ) without core bare–exchange contributions.

The solution of this puzzling situation is provided by the role of the above–

mentioned 3s and 3p states, which, despite being well separated in energy from

the 3d ones, have a large spatial overlap with the latter. As a consequence, non-

negligible contributions to the self-energy are expected to arise from the exchange

contributions between 3d and 3s/3p states. These contributions can be included in

our calculation in a straightforward way by starting with a pseudopotential which

puts the whole 3rd atomic shell into the valence (see Chapter 2). Letting Gcore
0

represents the non-interacting Green’s function also containing the 3s/3p levels, the

self-energy computed as Gcore
0 W will yield the desired dynamical exchange between
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Figure 3.3: As in Fig. 3.2 but including core bare–exchange contributions.

3d bands and core bands composed of a bare exchange (static) contribution, plus

a correlation part. Naturally, a larger plane-wave cutoff (160 Ry) is needed for

convergence. As a result, we find large bare–exchange contributions from core levels,

leading to very different values of 〈Σnk
x − V nk〉 for s/p and d states, as illustrated in

Fig. 3.3. The role of core levels in the calculation of the bare exchange contributions

(whose importance was already addressed for transition metals by Aryasetiawan and

Gunnarsson [3], but estimated to be of the order of 1 eV) is hence crucial in the

case of copper [13].

The inclusion of core levels into the exchange self–energy decreases the
(
Σnk

x − V nk
xc

)

values for d–bands of ∼ 8 eV.

Point εnk Σnk
x − V nk

xc Mnk (εnk) εQP
nk − εnk

X1 −5.10 −8.87 8.50 −0.37

X3 −4.63 −9.33 8.90 −0.44

X2 −1.59 −9.47 7.79 −1.68

X5 −1.40 −8.66 7.11 −1.56

X4 1.44 3.56 −2.70 0.86

Table 3.3: As in Table 3.2 but including bare core exchange.

This large bare–exchange is able, as shown in Table 3.3 for X point, to balance
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the strong correlation energy of d-like states, giving a reasonable quasiparticle cor-

rections with Eq. (3.60). The presence of such a large bare exchange between core

and valence states can, in principle, involve some similar effects in the mass operator.

Physically this corresponds to allowing both screened exchange and polarization ef-

fects between core and valence/conduction states: if we call W̃core (1, 2) the dynamic

part of the screening function containing core-conduction hole-electron excitations

and G0
core (1, 2) the KS Green’s function relative to the 3s and {3p} states we get

M (1, 2) = i
[

W̃ (1, 2)G0 (1, 2) + W̃ (1, 2)G0
core (1, 2) +

W̃core (1, 2)G0 (1, 2) + W̃core (1, 2)G0
core (1, 2)

]

. (3.61)

However, Fig. 3.3 shows that core levels have a strong interaction only with d or-

bitals, completely full in copper. This means that W̃ could involve only excitation

from core levels to s/p conduction bands, leading to very small contributions to M

that we neglect. The final diagrammatic form of the Self–energy operator used here

is shown in Fig. 3.4.

Σnk (ω) + Σcore
nk (ω) =

n,k n,k
n1,k−q

q

+

n,k n,k
core levels,k−q

3s/3p

q

Σnk (ω) =

n,k n,k
n1,k−q

q

Figure 3.4: Diagrammatic form of the GW self–energy including the core levels contribution

If M core
nk (ω) is the contribution to Mnk (ω) due to only the 3s/3p levels (rhs of

Fig. 3.4)

M core
nk (ω) = i

∫

dt eiωt〈nk|W̃ (r1, r2, t)

[

G0
3s (r1, r2, t) +

∑

i=1,3

G0
3pi

(r1, r2, t)

]

|n′k〉,

(3.62)

the high binding energies of the core levels push the poles of M core
nk (ω) far from the

Fermi Level; thus in the region of the valence states energies the only contribution

of M core
nk (ω) comes from the real part. Moreover, being far from the poles of the

self-energy, the real part is dominated by the asymptotic behavior of the Hilbert

transformation that is well approximated (to within 1 meV) by a constant

< [M core
nk (ω)] ≈M core

nk for |ω − εnk| ≤ 2 eV. (3.63)
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Figure 3.5: M core
nk

as function of εnk

In Fig. 3.5 M core
nk is shown as a function of εnk and we see a strong peak in the d-like

states region. Despite of the small values of M core
nk , we will see their important role

in the comparison with experiment.

3.3.3 Iterative solution of quasiparticle equation

In the preceding section we have studied the role of core levels on the quasiparticle

energies starting from Eq. (3.60). In this section we will study in more detail the

determination of quasi particle energies far from Fermi level, where the non negligible

imaginary part of the self-energy requires a more appropriate solution of the QP

equation.

We have found that the QP wave-functions are identical to the DFT-LDA ones

by observing that the off-diagonal elements of either mass-operator and exchange

self-energy are negligible. Therefore, by neglecting band mixing we can calculate

directly the interacting Green’s function in the Bloch representation using the Dyson

Eq. (3.1) and adding the core contribution M core
nk

Gnk (ω) =
G0

nk (ω)

1 −G0
nk (ω) [Σnk

x +Mnk (ω) +M core
nk − V nk

xc ]
, (3.64)
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with Gnk (ω) defined as

Gnk (ω) =

∫

dr1 dr2 φ
∗
nk (r1)G (r1, r2, ω)φnk (r2) . (3.65)

From the expression for G0
nk (ω) we get

Gnk (ω) =
1

ω − εnk − [Σnk
x +Mnk (ω) +M core

nk − V nk
xc ]

, (3.66)

and the quasi-particle Eq. (1.168) reduces to

[

Gnk

(

εQP
nk

)]−1

= εQP
nk − εnk −

[

Σnk
x +Mnk

(

εQP
nk

)

+M core
nk − V nk

xc

]

= 0. (3.67)

To find εQP
nk we proceed in two steps: first we look for an approximated real QP

energy εQP,0
nk defined by

εQP,0
nk = εnk −

[

Σnk
x + <

[

Mnk

(

εQP,0
nk

)]

+M core
nk ,−V nk

xc

]

(3.68)

following an iterative procedure based on the secant method [14]; this method is

particularly fast and doesn’t need the first derivative like in the commonly used

perturbative Newton method [10]. The second step starts by defining the analytic

continuation of Mnk (ω) near εQP,0
nk as

Mnk (z) ≈Mnk

(

εQP,0
nk

)

+M ′
nk

(

εQP,0
nk

)(

z − εQP,0
nk

)

, (3.69)

with z complex. From Eq. (3.68-3.69) it follows immediately that the analytic con-

tinuation of Gnk (ω) is

Gnk (z) ≈ 1

z − εQP,0
nk − i=

[

Mnk

(

εQP,0
nk

)]

−M ′
nk

(

εQP,0
nk

)(

z − εQP,0
nk

)

=
Znk

z − εQP,0
nk − iZnk=

[

Mnk

(

εQP,0
nk

)] , (3.70)

with

Znk =
[

1 −M ′
nk

(

εQP,0
nk

)]−1

. (3.71)

Using Eq. (3.70) the QP complex energy solution of Eq. (3.67) is

<
[

εQP
nk

]

= εQP,0
nk −

=
[

M ′
nk

(

εQP,0
nk

)]

=
[

Mnk

(

εQP,0
nk

)]

(

1 −<
[

M ′
nk

(

εQP,0
nk

)])2

+
(

=
[

M ′
nk

(

εQP,0
nk

)])2 , (3.72)

=
[

εQP
nk

]

=

(

1 −<
[

M ′
nk

(

εQP,0
nk

)])

=
[

Mnk

(

εQP,0
nk

)]

(

1 −<
[

M ′
nk

(

εQP,0
nk

)])2

+
(

=
[

M ′
nk

(

εQP,0
nk

)])2 . (3.72′)
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Figure 3.6: Quasiparticle approximations to the imaginary part of GW Green’s function at X1

point. Tick full line: Green’s function from Eq. (3.66). Thin full line: QP approximation solved

on the complex plane. Dashed line: QP approximation solved on the real plane.

From Eqs. (3.72) we see that εQP
nk reduces to εQP,0

nk when =
[

M ′
nk

(

εQP,0
nk

)]

= 0.

As the imaginary part of M is, generally, much smaller than the real part the

approximate solution εQP,0
nk could appear reasonably. The corresponding imaginary

part is

=
[

εQP,0
nk

]

=
(

1 −<
[

M ′
nk

(

εQP,0
nk

)])−1

=
[

Mnk

(

εQP,0
nk

)]

. (3.73)

Indeed this is the case for the low (binding) energy conduction (valence) states.

However for deeper valence states (and for high conduction levels) differences of ∼
0.1 eV can be found between εQP,0

nk and εQP
nk . This is shown in detail for the state X1

in Fig. 3.6. A successful QP energy and renormalization factor Znk should be able to

correctly reproduce the Green’s function Gnk (ω) around the main peak. Following

the definition of εQP
nk and εQP,0

nk we have

GQP,0
nk (ω) =

Z0
nk

ω − εQP,0
nk

with Z0
nk ≡

(

1 −<
[

M ′
nk

(

εQP,0
nk

)])−1

∈ R (3.74)

and

GQP
nk (ω) =

Znk

ω − εQP
nk

with Znk ≡
(

1 −M ′
nk

(

εQP,0
nk

])−1

∈ C (3.75)

80



In Fig. 3.6 the imaginary part of Gnk (ω) (full thick line), GQP
nk (ω) (full thin line)

and GQP,0
nk (ω) (dashed line) are compared. From the comparison two conclusions

can be drawn:

(i) The lorentzian shape of =
[

GQP,0
nk (ω)

]

badly reproduces the exact = [Gnk (ω)].

This is a consequence of the large, not negligible, =
[

M ′
nk

(

εQP,0
nk

)]

∼ −0.18 at

the X1 point that gives a clear Fano–like low–energy asymmetry.

(ii) εQP,0
nk (ω) underestimates the peak position, correctly reproduced by εQP

nk .

The particular case of Fig. 3.6 is readily extrapolated to the general case. The imag-

inary part of Znk increases the QP energies of full states where =
[

M ′
nk

(

εQP,0
nk

)]

< 0

and =
[

Mnk

(

εQP,0
nk

)]

> 0 while decreases the empty bands energies where =
[

Mnk

(

εQP,0
nk

)]

changes sign.

3.4 Band Structure Results

LDA-DFT GW(1) GW(2) GW(3) Experiment

Positions Γ12 −2.27 −3.10 −2.82 −2.81 −2.78

of X5 −1.40 −2.35 −2.04 −2.04 −2.01

d-bands L3 −1.63 −2.55 −2.24 −2.24 −2.25

Γ12 − Γ25′ 0.91 0.64 0.63 0.60 0.81

Widths X5 −X3 3.22 2.55 2.58 2.49 2.79

of X5 −X1 3.69 2.99 3.04 2.90 3.17

d-bands L3 − L3 1.58 1.25 1.28 1.26 1.37

L3 − L1 3.72 2.82 2.91 2.83 2.91

Positions Γ1 −9.79 −9.40 −9.37 −9.24 −8.60

of sp-bands L2′ −1.14 −0.62 −0.57 −0.57 −0.85

L-gap L1 − L2′ 5.41 4.64 4.58 4.76 4.95

Table 3.4: Comparison of band widths and energy position with experimental values [15] at

high-symmetry points. All energies in eV. GW(1): GW calculation along real axes without screened

core exchange. GW(2): GW calculation along real axes with screened core exchange. GW(3): GW

calculation on complex plane with screened core exchange.

In Table 3.4 is shown the comparison between GW results, DFT-LDA and experi-

mental data. The first column (GW(1)) contains <
[

εQP,0
nk

]

with M core
nk = 0 while in
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the second column (GW(2)) ε
QP,0
nk is calculated with M core

nk 6= 0. The third column

(GW(3)) includes M core
nk and the Fano effect discussed in the last section.
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Figure 3.7: Comparison of experimental band structure (◦ ◦ ◦) with DFT-LDA (− − −) and

GW results (—)

In Fig. 3.7 the full theoretical band structure is compared with experimental

data: the agreement is remarkably good and the fact that the GW corrections

cannot be reproduced by any rigid shift of the LDA bands clearly appears. For

instance, at the L point the shifts change sign for different valence bands, with QP

corrections ranging from −0.29 eV to −0.61 eV, to 0.57 eV for the three d–bands. As

a consequence, the L1 − L2′ gap decreases after inclusion of self–energy corrections

(see also Table 3.4, last line), in contrast with the usual behavior occurring in

semiconductors and insulators. The other gaps at L and X, however, increase. All

gaps come to good agreement with experimental data. Unoccupied (conduction)

bands at points L, X and K are also obtained in very good agreement with the

experimental data. These findings demonstrate that the strong deviations from the

single quasiparticle band theory in copper, as suggested in Ref. [1], do not occur. QP

band–theory in theGW approximation, instead, remarkably deviates from the DFT–

LDA + scissors–operator approach, due to the interplay of the different localization
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and correlation properties of d and s/p states.

On solving the Dyson equation on the complex plane and on including M core
nk

terms the lower points (X1,X3,Γ1 and L1) are raised, as expected from the discussion

of Section 3.3.2; this worsens the comparison with experimental d-like states but is in

accordance with the physical fact that in the GW approximation hole-hole scattering

diagrams are absent, which are contained in the “T-Matrix” approximation.

In conclusion the single–quasiparticle bandstructure computed within Hedin’s

GW approximation for the electron self–energy turns out to be in very good agree-

ment with experiments. The GW method, originally devised to describe the long-

range charge oscillations [16], is hence shown to yield a good description also of

copper, a system characterized by localized orbitals and short-range correlation ef-

fects. The corrections to the LDA Kohn–Sham eigenvalues for the d-bands are highly

non–trivial, since even their sign turns out to be k-point and band–dependent, ruling

out the validity of any “scissors operator” approximation. Furthermore, exchange

effects between d–electrons and 3s, 3p core states play a key role and cannot be

neglected in the calculation of QP corrections.
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Phys. Rev. Lett. 75, 3489 (1995) for CdS, where the inclusion of core levels in

the GW calculation lowers the d–bands position of about 3 eV.

85



[14] W. H. Press, B. P. Flannery, S. A. Teukolosky and W. T. Vetterling, Numerical

Recipes (FORTRAN Version), Cambridge University Press 1986, pp 248-251
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Chapter 4

Lifetimes of d–holes in Copper

Electron and hole dynamics in the bulk as well as at various surfaces of a solid play

a key role in a great number of physical and chemical phenomena. The link between

electron/hole dynamical and transport properties (already discussed in Chapter 1)

has numerous practical applications for various electronic and optical devices. As

modern electronic devices are scaled down at very small dimensions and their oper-

ating speed becomes faster, the temporal fast scale of electronic many–body effects

(∼ fs) become relevant.

However our quantitative understanding of the excitation mechanisms and their

relaxation channels is far from being complete. Two experimental techniques are

used to investigate the relaxation times of holes and electrons in solids:

(i) For filled states Angle Resolved Photoemission Spectra (ARPES) measures

the angle projected density of states along high symmetry lines. The peak

positions are a measure of the quasiparticle energies while the quasiparticle

width Γnk is linked to the quasiparticle lifetime by τnk ∼ 1/Γnk.

(ii) For unoccupied states ARPES can not be used, because these states are not

directly ionizable. In these cases Time Resolved two Photon Photoemission

(TR2PPE) is use. This technique uses a first laser pulse to “pump” an electron

from valence states into low–lying conduction states (these electrons are called

“hot–electrons”). Then, with a fixed time delay, a second laser ionizes (probes)

the pumped electron. The intensity of the photoelectron beam is measured as

function of the laser delay. This is linked to the population dynamics of the

excited states and its tail at long times is dominated by the electronic lifetime.

Although GW has also become the state–of–the–art method for computing life-

times [1], the results, compared to those for quasiparticle band structure, are far
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from being definitive.

There is a wide experimental evidence that at copper surfaces the hot–electron

lifetimes (probed with TR2PPE) do not follow an inverse quadratic dependence

θ ∝ (E − Ef )
2, as found in GW calculations and expected from simple phase space

arguments. In this case, however, a possible explanation could be found in the

TR2PPE technique itself. During the hot–electron relaxation the system is ionized,

and the relaxation occurs in presence of the hole, created with the primary laser.

Therefore, beyond the simple optical recombination, short time excitonic effects

could appear, while they are not allowed within GW .

However also for the (simpler) ARPES experiments recent GW calculations of

the d–band lifetimes in copper [2] found only a qualitative agreement with exper-

imental results with a surprising overestimation of the d–hole lifetimes. In this

chapter I will show that this overestimation does not occur if the full, non trivial,

quasiparticle band structure calculated in the last chapter is included.

In Section 4.1 the theoretical framework of GW will be revisited in order to

clarify the physics and the numerical implementation. This will be described in

Section 4.2. In Section 4.3 the results will be discussed together with the effect of

self–consistency and their connection with vertex corrections beyond GW .

4.1 The GW equations revisited

Quasiparticle energies and widths are, of course, strictly linked. In the last chap-

ter I have written all the equations necessary to calculate the QP energies and,

consequently, the QP widths

=
[

εQP
nk

]

≡ Γnk = Re [Znk] Im
[

Mnk

(

εQP,0
nk

)]

, (4.1)

with

Znk =
(

1 −M ′
nk

(

εQP,0
nk

))−1

, (4.2)

and εQP,0
nk solution of Dyson equation on the real axes (See Section 3.3.3)

εQP,0
nk = εnk −

[

Σnk
x + <

[

Mnk

(

εQP,0
nk

)]

+M core
nk .− V nk

xc

]

(4.3)

We have, also, obtained in Section 3.2.2 a closed form for the mass operator Mnk (ω)

Mnk (ω) = −
∑

n1

∫

BZ

dq

(2π)3

[∫ ∞

−∞

dω′ Γh (nn1n,k − q, ω′)

ω − ω′ − εn1(k−q) + iδ

+

∫ ∞

−∞

dω′ Γe (nn1n,k − q, ω′)

ω − ω′ − εn1(k−q) − iδ

]

, (4.4)
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with

Γh (nn1n,k − q, ω′) = 2
∑

G,G′

ρ̃nn1
(k,q,G) [ρ̃nn1

(k,q,G′)]
∗

2fn1(k−q)

|q + G||q + G′|=
[
ε̃−1
G,G′ (q, ω)

]
θ (ω) , (4.5)

Γe (nn1n,k − q, ω′) = 2
∑

G,G′

ρ̃nn1
(k,q,G) [ρ̃nn1

(k,q,G′)]
∗

2
(
1 − fn1(k−q)

)

|q + G||q + G′|=
[
ε̃−1
G,G′ (q, ω)

]
θ (−ω) . (4.5′)

Thus we might be able to calculate the QP widths following the same procedure

used in Chapter 3. However, lifetimes calculation requires a approach different from

that used for the QP energies. This point will be demonstrated in the next section

where we will focus the two parameters in the GW approach, that, in contrast with

the calculation of the QP energies are crucial in the present context

(i) Energy range step. To calculate the real part of the mass operator the dielectric

matrix must be calculated over a large energy range. Although numerically

heavy, the summation over all the components of the matrix allows to use

a, relatively large energy step of ∼ 1 eV. However, we are going to calculate

QP widths of the order of meV, three orders of magnitude smaller than the

correlation energy, and too small compared with the energy step.

(ii) The W broadening. The screening function has been calculated with a broad-

ening of 0.1 eV. This is, again, too much large compared with the resolution

required for the lifetime calculations.

In order, therefore, to introduce the correct numerical procedure to follow and,

also, to understand better the physics underlying the GW approach to the lifetimes

problem we may rewrite the GW equations as follows. Using the relation

1

ω − ω′ − εn1(k−q) ± iδ
= ∓iπδ

(
ω − ω′ − εn1(k−q)

)
+ P 1

ω − ω′ − εn1(k−q)

, (4.6)

we can simplify Eq. (4.4) using the fact that Γh/e functions are real

Im [Mnk (ω)] = 2π
∑

n1

∑

q

∑

G,G′

{
ρ̃nn1

(k,q,G) [ρ̃nn1
(k,q,G′)]

∗

(∫

BZ′(q)

dq

(2π)3

′ 1

|q + G||q + G′|

)

Im
[
ε̃−1
G,G′

(
q, ω − εn1(k−q)

)]




(
2 − fn1(k−q)

)
θ
(
ω − εn1(k−q)

)

︸ ︷︷ ︸

A

− fn1(k−q)θ
(
εn1(k−q) − ω

)

︸ ︷︷ ︸

B










. (4.7)

89



In Eq. (4.7) the “Random Integration Method” introduced in Section 3.3.1 has been

applied only to the Coulomb Fourier components, while the occupation factors are

left outside the q′ integral. With this approximation we neglect the “Fermi Sur-

face” effects observed in the bare–exchange matrix elements in Section 3.3.1. In

this case, however, this neglection is reasonable because, at difference with Σx, the

contribution to the QP width coming from states near the Fermi level is small due to

the simple phase space effects which yield the well known behavior θ ∝ (E − Ef )
2.

Regarding the two parameters discussed above, Eq. (4.7) does not require, anymore,

an energy step to calculate the ε̃−1
G,G′ (q, ω) function, as this is calculated at exactly

each allowed energy transition εQP,0
nk − εn1(k−q).
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Figure 4.1: Schematical representation of the two relaxation channels (A) and (B) of Eq. (4.7).

Filled circles are electrons while empty ones are holes. The two different patterns delimit the

energy regions corresponding to condition (A) and (B).

The two terms, labeled with A and B, in the last line of Eq. (4.7) correspond to

two distinct process involving the conduction/valence states.

If Γnk = Re [Znk] Im
[

Mnk

(

εQP,0
nk

)]

we have two possible cases:

(
2 − fn1(k−q)

)
6= 0 ω > εn1(k−q), (A)

fn1(k−q) 6= 0 ω < εn1(k−q). (B)
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The contribution from ω = εn1(k−q) has been omitted because the corresponding

transferred energy would be vanishingly small, and Im[ε̃−1
G,G′ (q, 0)] = 0. The two

terms (A) and (B) are shown, schematically, in Fig. 4.1

(A): An electron can decay into any empty state (i.e., with energy above the Fermi

level) with lower energy.

(B): A hole can decay into any filled state (i.e., with energy below the Fermi level)

with higher energy.

Both relaxation processes are directed towards virtual final states |n1,k − q〉 that,

in the present non selfconsistent GW , conserves the energy lost in the decay. This

energy is dissipated in hole–electron excitations contained in the screening function.

The two processes (A) and (B) are energetically distinct, except in the presence

of a fictious electronic temperature introduced in order to smooth the occupation

of states near the Fermi surface, or to achieve the correct number of electrons using

small k–point grids. In these cases, a level very near the Fermi energy can be

partially occupied, and, as a consequence, both decay channels (A) and (B) would

be allowed. However these (few) cases are not physical, having derived from a

fictious electronic temperature, and thus are omitted in the present calculations.

4.2 The numerical approach

Eq. (4.7) can be calculated straightforwardly to check the convergence of the QP

widths with respect to the various parameters that characterize the calculation:

1. Number of Fourier components in ε̃−1
G,G′ (q, ω): Eq. (4.7).

2. Number of q (k) points:
∑

q in Eq. (4.7).

3. Number of bands in the RPA polarization function, Eq. (3.22) that, trough

Eqs. (3.21), (3.23) and (3.24) define the symmetric dielectric function.

4. The broadening η in the RPA polarization function, Eq. (3.22).

All the convergence tests will be done at the first four bands at X point, using the

approximate equation

Γnk ∼ Im
[
Mnk

(
εDFT−LDA
nk

)]
. (4.8)
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The number of bands in the intermediate states (
∑

n1
in Eq. (4.7)) is not a free

parameter, because only a limited number is reached due to the energy constraints

imposed by conditions (A) and (B) of Eq. (4.7).

A first calculation is shown in Fig. 4.2 at fixed number of 89 G’s, 20 bands in

the RPA polarization and two different sets of q–points: 19 (circles and full line)

coming from the 10 k–points Monkhorst–Pack [3] grid and 44 (squares and dashed

line), corresponding to the 28 k–points MP grid. Changing the broadening η we see

great oscillations in both the curves, with very different values at low broadening.
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Figure 4.2: Quasiparticle widths (Eq. (4.8)) at of 89 G’s vectors, 20 bands in the RPA polarization

and for η = 5, 10, 50, 100 meV. Two different sets of q–points are used: 19 (circles and full line)

and 44 (squares and dashed line).
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This result is rather unsatisfactory, because, theoretically, we should retain only

the width obtained in the η → 0 limit. In the presence of results not depending on

the η value (like in the QP energies case) this parameter is not critical but in the

present case its effect on the QP widths is enormous. Clearly we have an indication

of the poor k sampling of the BZ, that gives large numerical noise in the screening

function.

A first solution could be to increase the number of k–points (and the correspond-

ing q grid) in the RPA polarization function construction leading to an increasing

numerical weight. Although this is the general procedure used in the literature, an

alternative approach can be introduced, following the “Random Integration Method”

discussed in Section 3.3.1. From Eqs. (3.21) (3.23) and (3.24) the RPA polarization

function χ0
G,G′ (q, ω) defines the symmetric dielectric function ε̃−1

G,G′ (q, ω), whose

poor sampling is the origin of the results of Fig. 4.2. Therefore, we adopt the

following ansatz

χ0
G,G′ (q, ω) = 2

∑

n n′

∫

BZ

dk

(2π)3 [ρ̃nn′ (k,q,G)]∗ ρ̃nn′ (k,q,G′)

[
fn′(k−q) (1 − fnk)

]
[

1

ω − εnk + εn′(k−q) + iδ
− 1

ω − εn′(k−q) + εnk − iδ

]

≈ 2
∑

n n′

∑

ki

[ρ̃nn′ (ki,q,G)]∗ ρ̃nn′ (ki,q,G
′)

∫

BZ′(ki)

dk

(2π)3

{
[
fn′(k−q) (1 − fnk)

]
[

1

ω − εnk + εn′(k−q) + iδ
−

1

ω − εn′(k−q) + εnk − iδ

]}

. (4.9)

Like in the case of the bare exchange self–energy in Eq. (4.9) the oscillator strengths

are supposed to remain constant in each “small BZ” BZ ′ (ki). These regions are

defined in Section 3.3.1 starting from a q–grid. In this case the same procedure is

used for a k–grid. The only requirement is that the base set of k–points must itself

be a Bravais Lattice. The last two lines of Eq. (4.9) can be considered as a random

integration of the Green’s function part of the RPA polarization and we expect that

using a large set of k–points (and energies εn′(k−q) and εnk) to integrate its energy

dependence the corresponding polarization functions will be much smoother.

An illustration of Eq. (4.9) is showed in Fig. 4.3, where the absorption spectrum

of copper is shown using Eq. (3.22) (naively discretized) and Eq. (4.9). Compared

with a fully converged ε2, the method introduced above improves considerably the

lineshape of the two spectra calculated with only 29 and 72 MP k–points in the IBZ.

The BZ ′ (ki) integrals are performed with a set of 5,000 random points divided in
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each small BZ.
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Figure 4.3: Dielectric function calculated with and without the “random integration method” of

Eq. (4.9). In both frames: 29 k–points grid (dotted line), 72 k–points grid (dashed line) and 11,000

random k–points in all the BZ (full line). In the upper frame the RPA polarization is calculated

naively, while in the lower frame the “random integration method” is used with 5,000 k–points in

all the BZ used to integrate the small BZ ′ (ki).
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Figure 4.4: As in Fig. 4.3 for the EEL spectra.
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For the calculation of the QP widths the inverse dielectric function must be

calculated. In Fig. 4.4 the same comparison is made for the EEL spectra. In the

upper frame the oscillations responsible of the bad behavior of Γnk shown in Fig. 4.2

are evident. In the lower frame these oscillations are much smaller and, as showed

in Fig. 4.5 the effect on Γnk is crucial. On lowering the broadening η for all the

bands at the X point, a 5% relative discrepancy between the widths calculated with

19 and 44 q points is found and, most importantly, this result is achieved with a

low computational load. Hence all the calculations from now on will be performed

at η = 5 meV, which can be considered to be the required η → 0 limit of the QP

widths.
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Figure 4.5: As in Fig. 4.2 but using the “random integration method” of Eq. (4.9). 1,000 random

k–points in all the BZ are used to integrate the small BZ ′ (ki).

Although the calculation time is now largely reduced, a last test should be made

on the number of k–points required to converge Eq. (4.9). In Fig. 4.5 a random
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set of k–points was used. However, using random points Eq. (4.9) cannot be used

as it is, because the transitions nk → n′ (k − q) always conserves the transferred

momenta q. A random grid corresponds to a random q grid, whereas we want to use

a MP q–grid. To overcome this point the transitions nk → n′ (k − q) are defined

allowing transitions from any k–point contained in the BZ ′ (k) to any k–point in

BZ ′ (k − q). This corresponds a numerical uncertainty on the transferred momenta

q that, however, is consistent with the numerical integration defined with Eq. (4.7).
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Figure 4.6: Quasiparticle widths (Eq. (4.8)) at 89 G’s vectors, 20 bands in the RPA polarization

and for 19 q’s in the IBZ. Two different sets of k–points in the integration of Eq. (4.9) are used:

1,000 (circles and full line) and 5,000 (squares and dashed line).

Using this “trick” we can minimize, also, the number of random k–points, as

shown in Fig. 4.6, where calculations at 19 q’s and 89 G’s are done with 1,000 and
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5,000 k–points in the electron/hole Green’s function integration. We find that fully

converged results are obtained using 1,000 k–points.
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Figure 4.7: Quasiparticle widths (Eq. (4.8)) as function of the number of G’s in the inverse

dielectric function. 20 bands in the RPA polarization are used, 19 q’s in the IBZ, η = 5 meV and

1,000 k–points in the integration of Eq. (4.9). Vertical arrows indicates the 5% of the converged

value chosen as maximum numerical margin.

The last parameters to fix are the number of G components of the inverse dielec-

tric matrix and the number of bands in the RPA polarization function. In Fig. 4.7

the bands in χ0 are fixed at 20 and the G components are increased until conver-

gence is reached. We note that QP widths requires a (slight) lower number of G

with respect to the real part, 283 compared to 307.
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Band 20 bands in χ0 40 bands in χ0 Relative error

X1 3.91 4.27 8%

X3 3.15 3.09 2%

X2 277.70 288.28 4%

X5 514.52 523.79 2%

Table 4.1: Comparison of the QP widths at the X point obtained using 20 and 40 bands in the

RPA polarization. 89 G’s are used.

The effect of the number of bands used to construct χ0 is shown in Table 4.1

where the result of the calculations with 20 and 40 bands are compared. 89 G’s are

used. All the relative errors agree within 10%, and only the value at X1 is above

the 5% margin.

4.3 Results and discussion

In all the preceding chapters we have used the notation GW to indicate the non–

selfconsistent solution of the Dyson equation. Since, in the following sections, we

will study the effect of self–consistency, I will refer to the QP energies found in

Chapter 3 as G0W0 results.

Eq. (4.8) fully neglects the QP correction Re
[

Σnk

(

εQP,0
nk

)]

assuming εQP,0
nk =

εDFT−LDA
nk and consequently Znk = 1. We will refer to them as “on shell” G0W0

because the input energies of the QP equation are supposed to remain constant and

used to calculate the QP lifetimes.

In Fig. 4.8 we compare the “on shell” G0W0 calculation with G0W0, the full solu-

tion of Eqs. (4.1–4.3) and the experimental results [2] for the states X3,Γ25′ ,Γ12, X2

and X5. The “on shell” G0W0 yields lifetimes underestimated by a factor of 4 at

the top of thed–bands and overestimated by a factor of 3 at the d–bands bottom

while the G0W0 results are in good agreement with experiment. Also, the energy

position of the quasiparticle peaks are well reproduced in G0W0, while in the “on

shell” calculation the QP energies are spread over a larger range of energies reflecting

the well–known discrepancies between DFT–LDA and experimental band structure.

The origin for the large lifetime differences between the two calculations are the

QP corrections for the d–bands of copper which are completely neglected in the “on

shell” calculations.
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Figure 4.8: Quasiparticle lifetimes (upper frame) and widths (lower frame) calculated within

“on shell” G0W0 (dotted line and squares) and G0W0 (full line and circles) compared with exper-

iment [2] (diamonds). QP energies are relative to the Fermi level.

Because of the inclusion of these non trivial corrections, d levels acquire impor-

tant decay channels that are completely neglected in the “on shell” approach. These

can be understood by rewriting the hole contribution to Eq. (4.7) as follows:

Γhole
nk ∝

∑

n′

∑

q

Im
[

Wnk→n′(k−q)

(

εDFT−LDA
n′(k−q) − εQP,0

nk

)]

θ
(

εDFT−LDA
n′(k−q) − εQP,0

nk

)

fn′(k−q), (4.10)
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where W (ω) is the dynamically screened potential. For the top of the d bands G0W0

yields negative QP corrections, as shown in Fig. 3.7 and Table 3.4 of Chapter 3. This

means that Eq. (4.10) also contains contributions coming from the decay of the QP

d band to exactly the same DFT–LDA band. We will refer a these transitions as

“intraband decay channels”. These contributions are important because the d–bands

of copper are flat and the corresponding density of states is large. In the “on shell”

calculation the intermediate states (n′ (k − q) in Eq. (4.8)) have the same energies of

the quasiparticle; this means that the “intraband decay channels” are not allowed,

as explained at the end of Section 4.1. This leads to the usual interpretation of the

large lifetimes calculated at the top of the d bands as being due to the fact that

these d states can decay only in s/p states that contribute less than bands with the

same character.
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Figure 4.9: Difference of the quasiparticle lifetimes calculated within “on shell” G0W0 and full

G0W0 for a large set of k–points and bands.

The great importance of these ”intraband decay channels” in G0W0 is shown

also in Fig. 4.9 where we plot the function

F
(

εQP,0
nk

)

≡ 2




1

Im
[
Mnk

(
εDFT−LDA
nk

)] − 1

Re [Znk] Im
[

Mnk

(

εQP,0
nk

)]



 , (4.11)
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which contains contribution mainly from these channels. We see that in the region

of the d–bands the difference is as large as 80 fs, and it constitutes the main contri-

bution to the hole lifetime. This confirms that, in order to reproduce correctly the

experimental data, these ”intraband decay channels” must be included. Moreover

their presence is a direct consequence of the strong QP corrections found in the last

chapter.

4.4 A model self–consistent calculation

Even if the results of G0W0 are in good agreement with experiment a natural ques-

tion is the physical meaning of the “intraband decay channels” described above. Not

being at self-consistency, the solid is described within G0W0 as composed of quasi-

particle states and virtual states (those involved in the hole decay) with different

energies. The “on shell” approximation removes this difference describing both sets

of states within DFT–LDA.

Mathematically the virtual states are, in Eq. (4.10), those called |n′ (k − q)〉.
Although Eq. (4.10) contains a delta function that conserves the energy in the tran-

sition |nk〉 → |n′ (k − q)〉 mediated by the screening function these virtual state

are not stable, physical, states. The delta function is a consequence of the ap-

proximated non selfconsistent approach we are using. By physical states I mean

observable states. The physical quantity is the imaginary part of the interacting

Green’s function Gnk (ω) that, near the quasiparticle peak, is characterized by an

energy indetermination allowed by uncertainty principle. So there is no way to select

any of these intermediate states.

But, in any case, the description given by G0W0 is, in some way, surprising. A

satisfactory approximation for the self–energy operator, as we already know from

Chapter 1, should preserve some conserved quantities, and this is achieved only

at self–consistency. So, physically, within the quasiparticle approximation I should

expect a description of the interacting system all in term of quasiparticle and not of

different types of particles.

However if the G0W0 approach to lifetimes seems to contain some physical con-

tradictions the mathematical framework puts the results on a firm ground. The

“intraband decay channels” derive from the fact that we are not at self–consistency;

they must be included because of their relation to the same method that yields

quasiparticle energies in such good agreement with experiment.

At this point a natural question is: “can selfconsistency solve this apparent con-
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tradiction confirming the results of G0W0 found in this and in the last chapter?”.

So far a full selfconsistent GW calculation has been carried out only for the

homogeneous electron gas [4] and simple semiconductors and metals [5] yielding

results generally worse than the non selfconsistent G0W0. If the construction of

the selfconsistent GW self–energy is a formidable task even for the simple systems

mentioned above, in copper the update of the screening function is numerically

rather demanding for the presence of localized d orbitals. To test the effect of

selfconsistency on QP energies and lifetimes we use a simplified GW0 method where

the self–energy operator is defined as

Σi (r, r′;ω) ≡
∫

C

dω′Gi−1 (r, r′;ω′)W0 (r, r′;ω − ω′) , (4.12)

where i is the iteration number (for i = 0 we have DFT–LDA). C is the contour in

the complex frequency plane defined as a straight line from −∞ to 0 just above the

real axes and from 0 to ∞ below. G(i−1) involves the QP energies obtained from

Σ(i−1) without considering renormalization factors, lifetimes and energy structures

beyond QP peaks

Gi (r, r
′;ω) = 2

∑

n

∑

k∈BZ

φnk (r)φ∗
nk (r)




fnk

ω −Re
(

εQP,i
nk

)

− iδ
+

1 − fnk

ω −Re
(

εQP,i
nk

)

+ iδ



 . (4.13)

I have supposed that the occupation numbers remain mainly unchanged. Analo-

gously to Eq. (4.1–4.3) we define

Γi
nk = Re

[
Zi

nk

]
Im
[

M i
nk

(

εQP,i
nk

)]

, (4.14)

with

Zi
nk =

(

1 −
∣
∣
∣
∣

dM i
nk (ω)

dω

∣
∣
∣
∣
ω=εQP,i

nk

)−1

, (4.15)

and εQP,i
nk the solution of Dyson equation

εQP,i
nk = εQP,i−1

nk −
[

Σnk
x + <

[

M i
nk

(

εQP,i
nk

)]

+M core
nk − V nk

xc

]

. (4.16)

Clearly for i = 0 we have that εQP,i
nk = εDFT−LDA

nk . As the QP bandstructure resulting

from the first iteration is in excellent agreement with experiment, our first step is an

“on shell” G1W0 calculation. This means that the quasiparticle energies are fixed

at the G0W0 level and the lifetimes are calculated as

Γi=2,on−shell
nk = Re

[
Zi=1

nk

]
Im
[

M i=2
nk

(

εQP,i=1
nk

)]

. (4.17)
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The resulting lifetimes are compared with experiment in Fig. 4.10. We see that

forcing the QP energies to be equal to those of the intermediate virtual states lifetime

results are similar to those of the “on shell” G0W0 method. The same overestimation

of the top of the d bands lifetime is found. This confirms that the key to understand

the qualitative agreement of G0W0 is the inclusion of the “intraband decay channels”

described by Eq. (4.8).
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Figure 4.10: Quasiparticle lifetimes (upper frame) and widths (lower frame) calculated within

“on shell” G0W0 (dotted line and squares), G0W0 (full line and circles) and “on shell” G1W0

(dashed line and diamonds) compared with experiment [2] (diamonds). QP energies are relative

to the Fermi level.
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A further question could be whether selfconsistency leaves unchanged the good

quasiparticle energies obtained within G0W0 while improving the lifetimes. However

at higher iteration orders of the GW0 QP equation the resulting energies worsen, as

shown in Table 4.2. The d–bands width decreases and the agreement with experi-

ment worsens, with discrepancies well above the DFT–LDA values.

DFT–LDA G0W0 G1W0 G2W0 Experiment

Γ12 − Γ25′ 0.91 0.60 0.38 0.23 0.81

Widths X5 −X3 3.23 2.49 1.99 1.65 2.79

of X5 −X1 3.70 2.90 2.31 1.92 3.17

d-bands L3 − L3 1.58 1.26 1.03 0.90 1.37

L3 − L1 3.72 2.83 2.13 1.65 2.91

L-gap L1 − L2′ 5.40 4.76 4.78 3.77 4.95

Table 4.2: Comparison of experimental bands widths of copper with first five GW0 iterations.

The increasing disagreement of the QP band structure at increasing iterations

of the Dyson equation does not allow any further study of the lifetimes. This is

because energies and width are strictly linked, as discussed before, and we expect

that an increasing disagreement in QP band structure leads to similar result for the

lifetimes.

The results presented so far suggest further research in the field of vertex correc-

tions beyond GW . As the “intraband decay channels” found are characteristic of a

non selfconsistent treatment of GW . At self-consistency these channels disappear

and, from what I have found, lifetimes are expected to show the general behavior of

the “on–shell” calculations discussed above.

Although theGW0 treatment used in this chapter approximates the analytic form

of the Green’s function G with those described in Eq. (4.13) the results obtained

seem rather general. To clarify better this point, and in order to generalize the

conclusions of this section, a further application of the present GW0 approach to

silicon is presented.

4.4.1 The case study of silicon

The application of the same approach described with Eq. (4.12–4.16) for silicon

reveals a simple interpretation for the reason of the “bad–performance” of the ap-

proximated GW0 approach proposed in the last section.

104



DFT–LDA G0W0 G1W0 Experiment

Present work HL GSS

Γ gap 2.56 2.93 3.35 3.30 3.27 3.40

X gap 3.50 3.90 4.43 3.39 4.27 4.2 4.6 ± 0.2

L gap 2.76 3.21 3.54 3.62 3.45

X5 − Γ4 0.60 0.87 1.29 1.24 1.12 1.17

Table 4.3: Comparison of experimental silicon gaps with Gi=0,1GW0, DFT–LDA and various

calculations found in literature.HL: Hybertsen and Louie [7], using Plasmon–Pole approximation.

GSS: Godby, Schlüter and Sham [8], without Plasmon–Pole approximation, using imaginary fre-

quency integration.

As expected, the same approach used for copper yields, for the direct gaps at

Γ, X, L and for the indirect gap, the results shown in Fig. (4.11) (presented in detail

in Table 4.3). All the gaps increases monotonically and, rather interesting, an

excellent agreement with the experimental values is obtained at the G1W0 level [6].

This is not in agreement with previous results obtained using the Plasmon–

Pole approximation [7] or a full screening calculation with the frequency integral of

Eq. (4.12) made on the imaginary axes [8] with a small number of frequencies. The

discrepancies may be linked to the approximations involved in these calculations

and the present result can be assumed to be more accurate.

A simple interpretation of the results obtained so far can be made using a simple,

and reasonable assumption on the frequency dependence of the GiW0 self–energy

operator. We assume that the quasiparticle states follows a simple scissor–operator

behavior

εQP,i
nk ∼ εQP,i−1

nk +







∆i
c < 0 n conduction

∆i
v > 0 n valence

, (4.18)

Considering only the hole contribution (Γh function, first line of Eq. (4.4)) to the

valence self–energy, and only the electron contribution (Γe function, second line of

Eq. (4.4)) to the conduction self–energy we would obtain

Σi
nk (ω) = Σnk

x +M i
nk (ω) − V nk

xc ∼ Σi−1
nk

(

ω − ∆i−1
c/v

)

. (4.19)

However, in order to account for the presence of the hole/electron contribution to

the electron/hole part of the self–energy we use a modified version of this equation

Σi
nk (ω) ∼ Σi−1

nk

(

ω − α∆i−1
c/v

)

, (4.20)
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Figure 4.11: Quasiparticle gaps for silicon for several iterations of GiGW0. The dashed lines

represent the experimental value(Tab,VII of Ref. [7]). Circles are the theoretical model to reproduce

the self–consistency effects on the silicon gap (see text).

with α to be considered as a parameter to be fixed later. Using this equation and

assuming that

dΣi
nk (ω)

dω

∣
∣
∣
∣
ω=εQP,i

nk

= β ∀ i, (4.21)

106



a closed solution of QP equation is obtained in a recursive form:

∆i
c/v = ∆i−1

c/v

(1 − αβ)

(1 − β)
. (4.22)

Fitting α = 0.73196 using the Γ gap behavior of Fig. 4.11 we obtain the data denoted

by circles. The agreement is surprisingly good, illustrating that the assumption used

is rough but reasonable. A further proof of the effect of the gaps opening on the

GiW0 iterative procedure is shown in Fig. 4.12. The real part of the Γ25′ self–

energy moves toward higher binding energy as the iterations of the Dyson equation

increases, as assumed above.
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Figure 4.12: Real part of self–energy of silicon for Γ25′ (lower curves) and Γ15 (upper curves)

for several iterations of GiGW0 procedure. The function f (ω) = ω is also plotted; its intersection

with the self–energy curve represents the quasiparticle energy. The increasing of Γ direct gap is

shown schematically.

This study of Si has shown that the characteristics of the QP corrections found at

the G0W0 level (like the d–bands width increase, or the gap opening) are enhanced at

higher orders of the simplified GW0 method used in this chapter. Moreover recently

Olevano and Reining [9] showed, by using the self–energy to include quasiparticle

corrections to the DFT–LDA energy bands without excitonic effects in the standard
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RPA, that the shape of the plasmon peak worsens. The electron–hole interaction

cancels the quasiparticle corrections improving the result. This means that a correct

screening function with excitonic effects and QP corrections is similar to the RPA

one used in the GW0 method. So the result presented here are indicative of what

could happen if excitonic effects, or QP corrections are included in the screening

function without vertex corrections.

108



Bibliography

[1] For a review see P.M. Echenique, J.M. Pitarke, E.V. Chulkov and A. Rubio,

Chemical Physics 251, 1 (2000).

[2] A. Gerlach, K. Berge, A. Goldmann, I. Campillo, A. Rubio, J.M. Pitarke and

P.M. Echenique Phys. Rev. B 64, 085423.

[3] H. J. Monkorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

[4] U.V. Barth and B. Holm, Phys. Rev. B 54,8411 (1996).
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Chapter 5

The plasmon resonance and the

reflectance spectrum of Silver in

the GW approximation

Although the coexistence of quasiparticles and density–fluctuation excitations in a

fully interacting system is a well known property, our knowledge of their properties

and mutual interaction in real materials is far from being complete.

In the last two chapters I have showed that GW successfully describes the quasi-

particle excitations of Cu. Starting from a non–interacting representation of the

system, electrons and holes are screened by the surrounding electronic cloud created

through the Coulomb interaction. The interaction of the undressed particle with

the screening cloud is responsible, also, for the electron/hole damping, correctly re-

produced within GW as shown in the last chapter. In contrast to the quasiparticle

picture, describing the fully interacting system as a gas of non interacting renormal-

ized particles, plasmons are due to collective modes. The plasmon frequency ωp is

defined by the condition (see Eq. (1.44) in Section 1.1.1)

ε
′′

(ωp) = 0, (5.1)

ε
′

(ωp) = 0. (5.1′)

Strictly speaking, Eqs. (5.1) have no real–valued solution. The plasmon can decays in

electron/hole pairs acquiring a finite lifetime. This yields a formal analogy between

plasmons and quasiparticles. Condition given in Eq. (5.1) also defines the relation

between the plasmon frequency and the many body effects required to calculate the
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dielectric function. This is defined (see Section 1.3.3) through the equation

ε (r, r′;ω) = δ (r − r′) −
∫

dr
′′ 1

|r − r′′ | χ̃
(

r
′′

, r′;ω
)

, (5.2)

where χ̃ is the irreducible polarization. Thus to calculate ε we must propose an

approximation for χ̃. As discussed in Section 1.3.3, equations defining χ̃ can be

solved in a closed form only by approximating the interaction Kernel Ξ̃. The most

intuitive physical process that should be included in the polarization function χ̃

are excitonic effects. However in the Baym–Kadanoff approach of Section 1.3.1 we

have seen that a norm–conserving approximation for χ̃ is obtained by calculating Ξ̃

from the same self–energy used to calculate the underlying band structure. If we

want to correctly describe excitonic effects beyond the static approximation for the

hole–electron interaction, we lose the simplicity of Hartree–Fock equation for χ̃ (See

Eq. (1.131) and Fig. 1.3). Hedin’s equations, on the other hand, consider screened

excitonic effects but the corresponding (norm–conserving) equation for χ̃ contains

complicated vertex corrections.

What is done in practice is to use an approximation for the Bethe–Salpeter

equation where the frequency dependence of the screening function is neglected. A

three–points functions L̃
(
rr′, r

′′

;ω
)

is defined

χ̃ (r, r′;ω) ≡ lim
r
′′→r′

L̃
(

rr′, r
′′

;ω
)

, (5.3)

solution of

L̃
(

rr′, r
′′

;ω
)

= −i
[

G0

(

r, r
′′

;ω
)

×G0

(

r
′′

, r′;ω
)]

+
∫

drr̃ [G0 (r, r;ω) ×G0 (r̃, r′;ω)]W (r, r̃;ω = 0) L̃
(

rr̃, r
′′

;ω
)

, (5.4)

with × indicating the convolution operator

f (ω) × g (ω) ≡
∫

dω′ f (ω′) g (ω − ω′) . (5.5)

Although Eq. (5.4) has been used in many cases to calculate the absorption spec-

trum, its application to the EEL spectra has been faced only recently. In the case of

silicon, Olevano and Reining [1] showed that using the GW self–energy to include

quasiparticle (QP) corrections to the DFT–LDA energy bands, without including

excitonic effects, worsens the shape of the plasmon peak with respect to experiment.

Inclusion of both effects yields spectra very similar to DFT–LDA ones and to exper-

iment. For simple metals, Ku and Eguiluz [2] obtained a correct positive dispersion
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of the plasmon width in K simply using RPA. They showed that many-body ef-

fects (quasiparticle corrections and/or excitonic effects) are not required to get a

good description of experimental data. These results agree with the general feeling

that excitonic effects partially cancel self–energy corrections. A similar result has

been found in Chapter 2 for Cu: the RPA response function without many-body

corrections yields good agreement with experimental EEL spectra.
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Figure 5.1: Electron energy loss function of Silver. Solid line: DFT–LDA. Boxes: experiment

[5].

In this framework the case of Silver is rather surprising: the experimental EELS

is dominated by a sharp plasmon peak at 3.83 eV, whose position and width are

badly reproduced in DFT–LDA RPA (see Fig. 5.1) . In particular, a width of about

0.5 eV is obtained within this approach, to be contrasted with a much narrower

experimental width (∼ 100 meV). A similar discrepancy occurs in the reflectance

spectrum, where a very narrow dip at 3.92 eV is hardly reproduced by DFT-LDA

calculations. Some papers have recently appeared [3, 4] which correct DFT-LDA

results by empirical scissors-operators shifts (or similar), meant to better account for

the band structure. Improved dielectric functions are obtained in this way, but no

solution of the puzzle mentioned above has been given. In this chapter I show that
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the non trivial quasiparticle correction on the d–bands renormalize the plasmon

position and width, leading them close to the experimental values. This result

is interpreted as due to d-orbitals polarization effects, which make the difference

with respects to the cases of simple metals and Silicon described above. Also the

reflectance dip at 3.92 eV is very well described.

5.1 DFT–LDA and GW band structure

Following the same procedure described in Chapter 2 a theoretical calculation of

the band structure of silver starts with the diagonalization of the Kohn–Sham (KS)

Hamiltonian. Like in copper, norm-conserving soft Martins-Troullier [6] pseudopo-

tentials have been used so to work at full convergence with a reasonable kinetic

energy cutoff (50 Ry.). The charge has been converged using the same set of 28

irreducible Monkhorst–Pack k–points used for Cu. The GW implementation has

also followed the same procedure extensively described in Chapter 3. The deep

4s/4p levels have been included in the screened exchange. The larger Ag unit cell

volume has required 229 G’s vectors to achieve full converged quasiparticle energies,

in contrast with the 307 used for copper.

DFT–LDA GW Experiment

Positions Γ12 −3.57 −4.81 −4.95

of X5 −2.49 −3.72 −3.97

d-bands L3(2) −2.71 −3.94 −4.15

Γ12 − Γ25′ 1.09 0.94 1.11

Widths X5 −X3 3.74 3.39 3.35

of X5 −X1 3.89 3.51 3.40

d-bands L3(2) − L3(1) 1.98 1.85 1.99

L3 − L1 3.64 3.17 2.94

X5 −X2 0.27 0.29 0.38

Table 5.1: Theoretical band widths and band energies for silver, at high-symmetry points. GW

energies are relative to the new QP Fermi Level. The values in the last column are from ref.[7]

where spin–orbit splittings have been removed when relevant.

The resulting quasiparticle band structure of Ag is compared with DFT–LDA

in Fig. 5.2 and also with experiment in Table 5.1. We see that the d band widths

decrease improving the agreement with experimental results. While the deep energy
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levels remain mostly unchanged, a downward shift of about 1.3 eV of the top d bands

leads to excellent agreement with experiment. Like in copper, GW corrections do

not act as a rigid shift of the whole occupied band structure with respect to the

unoccupied part, as in semiconductors. QP corrections are highly non trivial since

even their sign turns out to be band/k–point dependent.
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Figure 5.2: Comparison of DFT-LDA (−−−) band structure and GW results (—)

5.2 Electron energy loss and reflectance spectrum

To calculate the EELS spectra we use the QP band structure obtained so far to

evaluate the inverse dielectric function ε−1 (ω):

ε−1 (ω) =

[

εib (ω) − ω2
D

ω (ω + iη)

]−1

, (5.6)

where ωD = 9.48 eV is the Drude plasma frequency calculated ab-Initio by means of

the longitudinal f–sum rule described in Section 2.4.1, and εib (ω) is the intra–band

RPA absorption spectrum, given by

εib (ω) = 1 − 4π lim
q→0

∫

BZ

d3k

(2π)3

∑

n6=n′

Ωnn′ (k,q)
fn′,k−q − fn,k

ω + En,k−q − En′,k + iη
, (5.7)

with

Ωnn′ (k,q) =
|〈n′k − q|e−iq·r|nk〉|2

|q|2
, (5.8)
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where 0 ≤ fn (k) ≤ 2 represents the occupation number summed over spin compo-

nents.
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Figure 5.3: GW optical transition energies (circles) plotted as function of the DFT–LDA ones for

a grid of 29 k–points in the irreducible Brillouin zone. The dashed line corresponds to a vanishing

GW corrections while full lines are our fitted curves. In the inset the GW corrections on the

corresponding DFT–LDA energies are shown.

GW optical transition energies (En,k − En′,k) are obtained by fitting the QP

corrections calculated on 29 k–points in the irreducible Brillouin zone (BZ). Sep-

arate fitting procedures have been used for selected band pairs (n, n′) in order to

correctly reproduce the energy dependence of the quasiparticle corrections. These

fitted curves are plotted in Fig. 5.3 together with the behavior of (En,k − En′,k) plot-

ted as function of the DFT–LDA energy transitions
(
E0

n,k − E0
n′,k

)
. From Fig. 5.3

is evident that GW corrections are highly non–trivial (ranging from −1 to 1 eV, as

shown in the inset). GW optical transitions energies occurs systematically above the

dashed-line (representing the condition of vanishing GW corrections), corresponding

to a shift of the hole–electron energies to higher energy. However between 4 and 5

eV the hole–electron energies shift is negative. These correspond to transitions at

the L point from the Fermi level to the 6th metallic band.
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Figure 5.4: Interband absorption spectrum ε
′′

ib (ω) of Ag calculated using the quasiparticle GW

band structure. Theoretical spectra do not contain intraband contributions. In both frames and

insets: solid line, GW ; dashed line, DFT–LDA. Only in frame (a): boxes, full experimental ε
′′

(ω)

[5]. In the insets the DFT–LDA band structure is compared with the GW result, the arrows

indicate the most important bands’ transitions involved in ε
′′

ib (ω) shown in the corresponding

frame.

In Fig. 5.4 the GW interband contribution ε
′′

ib (ω) is compared with the DFT–

LDA result. In the upper frame the transitions involving the top d–bands as initial

levels are selected: GW corrections shift the whole spectra to higher energies, with

the threshold energy at ∼ 4 eV, in agreement with experiment. In panel (b) the

energy transitions from the Fermi level to the conduction bands near the L point are

considered: at difference with panel (a), GW shifts the DFT–LDA spectra towards

lower energies, with a large contribution below the interband threshold. The

two different effects of GW corrections on ε
′′

ib (ω) shown in Fig. 5.4 are crucial in

determining the plasmon resonance properties. The relation between the dielectric

function ε (ω) and the plasmon frequency ωp is similar to that between the self–

energy operator and the quasiparticle energy [8]: the plasmon energy is defined

through the relation

εib (ωp) −
ω2

D

ω2
p

= 0. (5.9)

117



0 4 8 12 16 20
ω [eV]

-10

-8

-6

-4

-2

0

2

4

R
e[

ε(
ω

)]
 [a

rb
.u

n.
]

3 4
ω [eV]

-6

-4

-2

0

2

4

R
e[

ε(
ω

)]
 [a

rb
.u

n.
] DFT-LDA GW

EXP.

Figure 5.5: Real part of the dielectric function ε (ω) of Silver. Solid line: GW . Dashed line:

DFT–LDA. Boxes: experiment [5]. In the inset the same comparison is made in a small energy

range around the plasmon resonance; arrows indicates the frequencies corresponding to the solution

of real part of Eq. (5.9).
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Figure 5.6: Imaginary part of the dielectric function ε (ω) of Silver. Solid line: GW . Dashed

line: DFT–LDA. Boxes: experiment [5].
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ωp is, in general, complex since decay into electron–hole pairs gives to the plasmon a

width proportional to ε
′′

ib (ωp). Now, the sharp onset of ε
′′

ib (ω) at ∼ 4 eV (frame (a),

Fig. 5.4) is responsible for a dampless solution of Eq. (5.9) just below the interband

threshold, as shown for a model hamiltonian in Ref. [9]. In Figs. 5.5 and 5.6 the

totalGW ε (ω) is compared with experimental data and DFT–LDA results. For both

real and imaginary part the shape of the spectra improves considerably with respect

to DFT–LDA. To define a sharp plasmon resonance, as observed experimentally,

Eq. (5.9) requires a zero of ε
′

(ω) and ε
′′

(ω). From Fig. 5.6 the second condition is

satisfied only below the absorption threshold, ∼ 3 eV for DFT–LDA and ∼ 4 eV

for GW . As shown in Fig. 5.5 DFT–LDA has no zero in ε
′

(ω) below the threshold.

On the other hand, GW has a distinct zero in ε
′

(ω) at ωp = 3.58 eV. Although

below the 4 eV of the threshold from Fig. 5.4, frame (b), we see that there are a

few transitions from the Fermi surface to the first conduction band at the L point,

contributing to the plasmon width ε
′′

ib (ωp) in agreement with the experimental results

that, using temperature and alloying techniques, have selected the optical transitions

responsible for the plasmon damping [10].

GW corrected EELS is compared with DFT–LDA and experimental results in

Fig. 5.7: the plasmon peak underestimated in intensity and position in DFT–LDA

is enhanced and shifted towards higher energies by GW corrections in excellent

agreement with experiment. The GW plasmon frequency, at 3.58 eV, is 0.25 eV

lower than the experimental value, due to the theoretical overestimation of ε
′′

ib (ω)

already found in copper. A possible explanation of this overestimation is the effect

of hole–electron interaction.

Thus the highly non–trivial QP corrections turn out to be crucial in reproduc-

ing the experimental EELS. Despite the overestimation of the absorption spectrum,

reflected in a small underestimation of the plasmon frequency, a full ab–initio RPA

GW calculation of the polarization function of silver is able to reproduce correctly

the plasmon resonance. Our theoretical calculations do not contradict previous

results for semiconductors and simple metals (where many-body effects are not im-

portant) if the role played by d orbitals is correctly interpreted. The situation can

be summarized as follows: Drude oscillations in the partially filled band underlay

plasma resonances in simple metal like K; collective oscillations of bound electrons

are responsible for plasmon resonances in semiconductors, like Si. In both cases

interband transitions occur at energies far from that of the plasma resonance, hence

they do not play an important role on the EELS spectra. A strong cancellation of

self energy and electron-hole interaction effects occurs, so that a good description is
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Figure 5.7: Electron Energy Loss Spectra (EELS) of Silver. Solid line: GW . Dashed line: DFT–

LDA. Boxes: experiment [5]. The non trivial quasiparticle GW corrections improve considerably

the DFT–LDA plasmon peak, yielding a striking agreement with the experiment.

obtained using the single particle (DFT–LDA) approach. In the case of Cu and Ag,

instead, interband transitions involving d-bands are close in energy to the Drude

plasma frequency; virtual interband transitions screen the electron-electron interac-

tion in the half-filled bands, leading to a renormalization of the plasma frequency.

More importantly, real interband transitions completely damp plasma oscillations in

Cu, but not in Ag, since in the latter case their onset occurs slightly above the renor-

malized plasma frequency. As a result the plasma resonance is completely damped

in Cu, but narrow and strong in Ag. This shows that, despite the free electron like

interpretation often associated to the plasmon peak of silver, d bands play a key

role.

An important quantity strictly linked to the correct description of the plasmon

frequency is the reflectivity R (ω)

R (ω) =
(n (ω) − 1)2 + k2 (ω)

(n (ω) + 1)2 + k2 (ω)
(5.10)

where ε
′′

(ω) = 2n (ω) k (ω) and ε
′

(ω) = (n2 (ω) − k2 (ω)). In Fig. 5.8 the DFT–LDA

R (ω) is compared with the GW calculation and the experimental result [5]. The
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Figure 5.8: Reflectivity spectra of Silver. Solid line: GW . Dashed line: DFT–LDA. Boxes:

experiment [5]. The sharp dip at the bulk resonance energy is correctly reproduced, with a sub-

stantial improvement of DFT–LDA spectra. As consequence of this result an improvement of Ag

surface electronic properties is expected, as discussed in the text.

experimental reflectance shows a very narrow dip at 3.92 eV, close to the plasmon

frequency, arising from the zero-reflectance point ω0, defined as ε (ω0) = 1. Again,

the width and depth of this reflectance dip are related to the imaginary part of ε(ω).

GW corrections make ω0 to occur below the main onset of interband transitions, and

hence produce a very narrow and deep reflectance minimum. Here the agreement

between GW results and experiments for the intensity and width of the dip at 3.92

eV is even more striking than in the EELS.

This result is of great importance for the optical and EELS properties of the

Ag(110) surface. Very recent calculations of Reflectance Anisotropy Spectra (RAS)

within DFT– LDA [12] were not able to reproduce quantitatively a sharp dip ob-

served experimentally. This peak, at energy ωs
p = 3.8 eV, has been assigned to a bulk

resonance, defined as ε
′
(
ωs

p

)
= 1. Hence, it is the same occurring in the reflectance

spectrum of Fig. 5.8. Its width and shape are strongly related to the reflectance dip

of Fig. 5.8 and therefore need GW corrections to be well reproduced.
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Conclusions

Several conclusions can be drawn from the results presented in this thesis. We

have shown that fully converged Density–Functional–Theory (DFT) in the Local–

Density Approximation (LDA) calculations for bulk copper and silver using plane

waves can be performed without requiring an exceedingly large basis set, by using

soft norm-conserving pseudopotentials including the 3d electrons in the valence.

The strong non-locality implied by such pseudopotentials manifests itself in a

very large contribution of the commutator between the PP and the position operator

in the calculation of the matrix elements entering the dielectric function.

Similar calculations including also the 3s and 3p shells in the valence are also

feasible using plane waves, but show very little difference on the bandstructure and

on the optical matrix elements not directly involving those shells.

At difference with the case of simple semiconductors, the disagreement between

the LDA theoretical bandstructure and the experimental one cannot be corrected

by a rigid shift of the Kohn-Sham eigenvalues. By contrast, the computed optical

mass, which involves only intraband transitions at the Fermi energy, is in very good

agreement with the experimental data. Also the theoretical absorption spectrum,

where only LDA eigenvalues within a few eV around the Fermi energy are important,

displays a quite satisfactory agreement with the experimental one. The overall

overestimation of about 20 percent in the amplitude of the main peaks cannot be

attributed to the effect of wavefunction pseudization inside the core region, and

should be ascribed to the neglection of self-energy (and excitonic) effects. Local

field effects on the macroscopic dielectric function turn out to be negligible, with or

without the inclusion of the Drude term.

The discrepancies showed by DFT–LDA bandstructure are, then, corrected using

the quasiparticle theory in the Hedin’s GW approximation for the electron self–

energy. The resulting single–quasiparticle bandstructure turns out to be in very good

agreement with experiments, with highly non trivial corrections being distinctly

band- and k-dependent.
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This represents the first ab–initio quasi-particle calculation for a noble metal

whose implementation has required the solution of several problems, namely: the

large number of plane waves needed to describe d orbitals; the calculation of k-

space sums close to the Fermi surface; and the inclusion of the exchange interaction

between valence and core levels. The results presented here show that there are

two different contributions, of different sign, to the quasiparticle corrections: the

bare exchange of d–levels with core levels and the d–d correlation energy. Although

the resulting quasiparticle corrections are of the order of 1 eV , the large correlation

energy indicates that copper is not “a prototype weakly correlated system”.

A full screening calculation has been performed, skipping the plasmon pole ap-

proximation. The resulting self–energy imaginary part has been used to calculate

the quasiparticle lifetimes. In contrast with recent findings I have showed that the

quasiparticle corrections are crucial in describing the experimental lifetimes. At

the d–bands top, I found lifetimes four times smaller than those calculated with-

out quasiparticle corrections on the underlying band–structure. Studying in detail

the GW approximation, such large difference is showed to be consequence of the

non selfconsistent approach to the Dyson equation. The interacting system turns

out to be described in terms of quasiparticles that can decay to lower energy non

interacting (DFT-LDA) states.

In Chapter 5 I have performed a calculation of the electron energy loss and re-

flectivity spectra of silver within the RPA approach, using the quasiparticle band

structure of silver calculated within GW method. I have shown that the peculiar,

well known plasmon peak observed experimentally in electron energy loss spec-

tra and the deep reflectivity minimum are correctly reproduced for the first time,

without using adjustable parameters. The theoretical calculations are shown to not

contradict previous results for semiconductors and simple metals (where many-body

effects are not important) if the role played by d orbitals is correctly interpreted. In

simple metals Drude oscillations in the partially filled band underlay plasma reso-

nances, while collective oscillations of bound electrons are responsible for plasmon

resonances in semiconductors, like Si. In both cases interband transitions occur at

energies far from that of the plasma resonance, hence they do not play an impor-

tant role. A strong cancellation of self energy and electron-hole interaction effects

occurs, so that a good description is obtained using the single particle (DFT–LDA)

approach. In the case of Cu and Ag, instead, interband transitions involving d-bands

are close in energy to the Drude plasma frequency and therefore virtual interband

transitions screen the electron-electron interaction in the half-filled bands, leading
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to a renormalization of the plasma frequency. More importantly, real interband

transitions completely damp plasma oscillations in Cu, but not in Ag, since in the

latter case their onset occurs slightly above the renormalized plasma frequency.

In the four Chapters 2– 5, that describe the original results of this thesis, the

d–orbitals have strongly characterized the underlying physics. Their role has been

shown to be crucial in solving puzzling results, apparently completely non physical:

the low–energy part of the absorption spectrum of copper, completely underesti-

mated if the matrix elements between d and s/p–orbitals are not correctly evaluated.

The quasiparticle corrections to the d–bands as large as 10 eV if the bare–exchange

with core levels are not included. The lifetimes at the top of the d–bands, overesti-

mated by a factor of 4, if the GW quasiparticle corrections are not included.

The results presented here also are a starting point for future applications. The

methods developed, the code written (see below) can be extrapolated to the study of

other d–metals leading ab–initio based Many–Body calculations a standard approach

to study their electronic and optical properties.

Finally, it is important to mention the numerical code used to calculate the GW

band structure and lifetimes, as well as the local field effects in the absorption spec-

trum that fully include the Drude contribution. The code is extensively described

in the Appendix and its development composes an important part of this thesis. It

has been applied to semiconductors bulk and surfaces and I hope it will have several

future applications.
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Appendix

The Self–Energy/Local Field code

The user prompt of

To perform all the calculations contained in this thesis two codes have been used.

The first is an, already existing, Car–Parrinello code to calculate the DFT–LDA

band eigenstates and eigenvalues in a Plane Wave basis. This code has been modified

to handle metallic systems, both in the electronic charge construction and in the

optical matrix elements calculation. Moreover it has been added the calculation of

Drude frequency as described in Chapter 1.
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Using as input the DFT–LDA eigenstates and eigenvalues I have written a new

code, (S.E.L.F.), or Self Energy and Local Field code, to perform the follow-

ing calculations

1. Local Field effects in copper, including the intraband contribution (See Sec-

tion 2.4.1).

2. Non self–consistent GW band structure of copper and silver including bare–

and screened– exchange contributions with core levels (Section 3.3.2).

3. Lifetimes of d–holes in copper.

4. Self–consistent GW0 lifetimes and band structure of Copper and Silicon (See

Capter 4).

The code is, actually, a package of applications that help the user to handle the Bril-

louin zone sampling (kptool.x), to define (numerically) the shape of the Fermi surface

for metallic systems (fermisurface.x) and to write the main input configuration file

(prompt.x).

The code is extensively described in the following sections that want to be a

useful manual for any future user (I hope) will use .

A.3 The Input/Output

uses six types of files to communicate with the user, to read the Kohn–

Sham states and report the calculated quantities and/or status of the calculation.

These files are characterized by a common prefix that indicates their function in the

code. In this section I will introduce the general properties of these files. A deeper

description will be done in each specific section.

In Table 2 the first group of files:

SELF: (INPUT) There are two classes of these files. self.gen, self.vkb and self.wfc

are unformatted files containing the Khon–Sham eigenstates and eigenvalues

together with general informations about the system symmetries and lattice

constants, the Plane Wave cutoff, the G components (all these general infor-

mations are in self.gen). They are generated by our Car–Parrinello code.

self.in is the main input control file and will be described below.

The others SELF files are all unformatted files user–defined. They tune the

behavior of the code and are either results of precedent runs or outputs

of the utilities (kptool.x and fermisurface.x)contained in the package.
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FLAG: (INPUT) These are empty files that, if found, switches on/off some flags in the

code. To create them in the directory where is running use the touch

Unix command as in the following example

> touch [ flag name ]

LIMIT: (INPUT) These files contains limits to some important variables in the code

that, usually, are defined on the basis of the DFT–LDA input parameters.

DATA: (OUTPUT/INPUT/INTERNAL) These file are created by the code and read

again at each next run. They avoid the code to calculate basic quantities (as

the q–points grid, the bare–exchange self–energy) at each run. They must not

be moved from the working directory.

Input Files Code Files

self.in flag.causal limits.sigx data.gops

self.gen flag.fullrange limits.W data.q0limit

self.wfc flag.noqpgint limits.comp data.qpt

self.vkb flag.noq0limit limits.BZgrid data.qptindex

self.qpt data.BZgrid

self.qp data.qpgint

self.Ghe data.vxcsigmax

self.qpLife data.plas.pole

data.W

data.epsm1

Table 2: Input and internal files

Together with the input files described above uses the output files listed

in Table 3

REPORT: (OUTPUT) In these file reports details about the run or about some

specific parts of the calculation (like the FFT grid). report.self is the main file

with details about each calculation done (Fermi level, k and q points and so

on). Note that also the standard output reports detail of the calculation but

with a different format, adequate for an “on–flight” control of the run.

OUT: (OUTPUT) These are the output files that can be plotted after the run.

They contain quantities as the dielectric function, EEL spectra, GW self–

energy and Green’s functions, etc.
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Output Files

report.self out.BZgrid

report.fft out.eel

report.lifestates out.epsm1

out.eps

out.qp

out.sigc*

out.G*

out.fermitest

out.lifetimes

out.decay channels

Table 3: Output files

A.4 The user prompt and the main input file

self.in is the file that controls the main action(s) of . It can be written

manually but the prompt.x utility offers an easy way to go trough all the parameters

needed for the specified calculation.

To use prompt.x one has simply to run it in the directory where self.gen, self.wfc

and self.vkb files have been stored. The following prompt will be offered to the user

### S.E.L.F. ###

or

### Semi-univErsal soLution oF dyson equation ###

or

### Self-Energy / Local-Field code ###

### MAIN MENU ###

1. Show data.* parameters

2. General Preparation run [data.gops/.q0limit/.qpt/.qptindex/.BZgrid]

3. Local-Field effects

4. SELF preparation run (1): integrals of 1/(|q+G||q+G‘|) [data.qpgint]

5. V_xc/Sigma_x [data.vxcsigmax]

6. GW preparation run (1): Plasmon-Pole parameters [data.plas.pole]

7. GW preparation run (2): Full Screen [data.W]

8. GW real QP

9. GW lifetimes [data.epsm1]

10. View self.in

11. Exit from main menu
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From this point on prompt.x helps to choose the parameters needed on the basis of

the runlevel (2–9) chosen.

For each runlevel prompt.x will ask to the user several parameters. These are

written on the self.in file that has the following form (parameters names are those

used in the code source)

### [A] Main actions ###

LOCALF : Local Field effects

GWSIG : GW self-energy

GWPP : Plasmon-Pole approximation ?

LLIFE : GW lifetimes calculation

### [B] General ###

ZERO : Definition of "0^+" [ev]

Q0(1) Q0(2) Q0(3) : Cartesian q -> 0 direction

NGFFT : Number of PWs in FFT

NBN : Max number of bands used

### [C] Pre-Self-Energy setup ###

PREQPGINT : Integration of 1/(|q+G||q+G‘|) ?

NPT : Random q-points in integration of 1/(|q+G||q+G‘|)

NGQPGINT : Plane-Waves in the 1/(|q+G||q+G‘|) integration

PRESIGX : Pre-Self-Energy run of Sigmax ?

PRESIG : Pre-Self-Energy run of Plasmon-Pole or W

EPSM1WR : Writing of the eps^{-1} matrix [W and/or lifetimes run]

### [D] Drude ###

DRUDEL : Drude contribution ?

WDRUDER WDRUDEI : Drude plasma frequency [ev]

### [E] Response function and W ###

NGBLK NGDIAG : Block and max diagonal dimension

WMIN WMAX : wmin, wmax [ev]

NW : Energy steps [ev]

NBNCHI : Number of bands used for Chi0

### [F] GW ###

SIGPERT : Perturbative solution of Dyson equation

NGWSIGX : Number of PWs in exchange SE

NBNMIX : Width of the off-diagonal terms in GW matrix

KSIG1 KSIG2 : First and last kpt for the GW-Corrections

NSIG1 BSIG2 : First and last band for the GW-Corrections

To describe the use of each parameters in the following sections I will show what

happens in each possible runlevel of the user–prompt of . I will discuss the
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parameters needed and the link with the theory described in the chapters of this

thesis.

In Fig. 9 the flowchart of in RUNLEVEL 2/4 is showed. I will refer to the

group of actions showed as Initialization of the code. Indeed each time is run

it executes all the Initialization actions skipping the sections where the corresponding

DATA file is found.

A.5 Runlevel 2: general preparation run N0 1

Purpose: G– and k–space operations. Calculation of q → 0 oscil-

lators’ strengths. Setup of files for hole–electron Green’s

function energy random integration.

Input files used: self.in, self.qpt (optional)

Output files: data.qpt, data.qptindex, data.q0limit, data.BZgrid

Parameters used: Q0(1),Q0(2),Q0(3) (REAL)

WDRUDER (REAL)

NBNCHI (INTEGER)

NGWSIGX (INTEGER)

Flags .true. in self.in: None

In this runlevel constructs the map corresponding to the symmetries ac-

tions on the G– (data.gops) and k–points (data.qpt and data.qptindex).

NGWSIGX represents the maximum number of G–vectors that are supposed to

be used in all the following calculations. The maximum value allowed is that cor-

responding to the number of plane waves in the Kohn–Sham charge (read from

self.gen).

data.gops is needed to construct the closed shells in G–space so that stops

after its constructions asking to be run again without any modifications. In this way

the G–vectors settings in the “main dimensions settings” showed in Fig. 9 will be

correctly closed to the nearest G–space shell (read now in data.gops).

data.q0limit contains the matrix elements

lim
q→0

〈n′k − q|e−iq·r|nk〉 = −iq · 〈φn′k−q| [r, H] |φnk〉
εn′ (k) − εn (k)

+O
(
q2
)
, (A.11)

and Q0(1),Q0(2),Q0(3) is q in Cartesian coordinates, units of 2π/alat (a.u.). NBNCHI

is the maximum band index used in the above equation.
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Energies, symmetries
G-vectors, k-vectors

Symmetry operations in
G- and k-space data.gops

k--points stars

Fermi level

self.qpt q--grid
indices

data.qpt
data.qptindex

If self.BZgrid is found data.BZgrid

Optical matrix elements data.q0limit

Random integration Method data.qpgint

Setup of the FFT mesh report.fft

Reading and FFT of the DFT--LDA wave--functions

Check of the spatial inversion symmetry

Figure 9: Flowchart of the code in the RUNLEVELS 2/4. The central row represents the main

code actions. On the left the user–defined input files (SELF), on the right the code output file.

In the first run the code executes all the action of this flowchart while, in the next run those

corresponding to an output DATA are skipped.

WDRUDER (ωD) is the Drude plasma frequency of the systems. It must be calcu-
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lated using the intraband longitudinal f–sum rule described in Section 2.4.1. In this

runlevel reports an important quantity linked to the Drude contribution: “the

maximum intraband transition energy”. According to the homogeneous electron gas

this energy is given by kF |q| with kF Fermi momentum given by kF = (3πω2
D/4)

1/3

(for detail see below). As the q vector of this runlevel will be used in all the following

calculations, the maximum intraband transition energy should be as small as possi-

ble. Too large values can appear as an nonphysical discontinuity of the absorption

spectrum at low energies.

self.qpt is the only user–defined file that can be used in this runlevel. It is

generated by the kptool.x utility. It forces to search only some q–vectors

obtained as corresponding grid of a smaller set of the given k–points differences.

For details see the separate kptool.x README file contained in the package.

A.6 Runlevel 3: Local Field effects

Purpose: Inclusion of Local Field effects in the absorption spec-

trum and energy loss spectra including the Drude con-

tributions.

Input files used: DATA files of runlevel 1, self.in, flag.causal (optional)

Output files: out.eel, out.eps, out.epsm1

Parameters used: DRUDEL (LOGICAL)

WDRUDER, WDRUDEI (REAL)

ZERO (REAL)

WMIN (REAL)

WMAX (REAL)

NW (INTEGER)

NBNCHI (INTEGER)

NGBLK (INTEGER)

NGDIAG (INTEGER)

Flags .true. in self.in: LOCALF

According to Equations of Section 2.4 the macroscopic dielectric function εM (ω)

is given by:

εM (ω) = 〈〈ε−1
L (rr′, ω)〉〉−1

0 , (A.12)
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with

〈〈ε−1
L (rr′, ω)〉〉0 = 1 + lim

q→0

4π

|q|2χG=0G′=0 (q, ω) , (A.13)

and

χG G′ (q, ω) = χ0
G G′ (q, ω) +

∑

G′′

χ0
G G′′ (q, ω)

4π

|q + G′′|2χG′′ G′ (q, ω) . (A.14)

In the χ matrix has two dimensions (NGBLK and NGDIAG):

χG G′ (q, ω) =












· · · · · · ↑ 0 ↑
· · · · · · NGBLK 0

...

· · · · · · ↓ 0 NGDIAG

0 0 0 · · · ↓
0 0 0 0 · · ·












(A.15)

while NBNCHI represents the number of bands in Eq. (A.14) (that can be lower than

those contained in the self.q0limit file). ZERO is the lorentzian broadening of χ.

The energy variable ω range in χ is [WMIN,WMAX] divided into NW steps. The

energies are given in eV.

usually performs T–ordered calculations, but with flag.causal it can be

forced to calculate a causal dielectric function.

A.6.1 The Jellium polarization function

If the system under study is a metal DRUDEL must be set .true. in order to include

intraband transitions. In Section 2.4.2 I have shown how the Drude contribution

is introduced in all the G components of the χ function. In this section I want to

explain in detail the analytic and numerical properties π0 (q, ω), the non-interacting

polarization calculated for a jellium model [1] with a density nel of electrons yielding

a classic plasma frequency ωD

π0 (q, ω) = − 1

2π2|q|

∫ kF |q|

0

x dx

(
1

ω − kF |q| + iη
− 1

ω − kF |q| − iη

)

, (A.16)

where

x =
ω

kF |q|
, (A.17)

and

kF =
(
3πω2

D/4
)1/3

. (A.18)

137



It turns out that

π0 (q, ω) =
1

2π2|q|

[

2kF |q| + (ω + iδ) log
ω + iδ − kf |q|

ω + iδ

− (ω − iδ) log
ω − iδ + kf |q|

ω − iδ

]

(A.19)

Unfortunately this equation is hard to calculate numerically because the logarithmic

functions becomes unstable when ω >> kf |q|. To solve this problem uses

Eq. (A.19) for ω < 10 kf |q| and the perturbative expansion

log (1 − x) ∼ −x− x2/2 − x3/3 + . . . ω > 10 kf |q|, (A.20)

matching the two behaviors at ω = 10 kf |q|.
The two parameters WDRUDER, WDRUDEI are, respectively, ωD and δ in Eq. (A.19).

0 1 2 3
ω/(kf|q|)

π 0(q
,ω

) [
ar

b.
un

.]

Re[π0(q,ω)]
Im[π0(q,ω)]

1/(2π|q|)

Figure 10: The Jellium polarization function, π0 (q, ω).

A.7 Runlevel 4: general preparation run N0 2

Purpose: Random integration of fnk/ (|q + G||q + G′|).

Input files used: DATA files of runlevel 1, self.in, data.fermisurf (Metallic

systems)

Output files: data.qpgint
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Parameters used: NGWSIGX (INTEGER)

NPT (INTEGER)

Flags .true. in self.in: PREQPGINT

In Section 3.3.1 I have introduced the Random Integration Method. This is

the purpose of this runlevel. The method is used to reduce the ansatz about the

continuity of the integrated function of Eq. (3.37) only to the oscillators’ strengths

ρ̃nn′ . For the occupation numbers and for the Fourier components of Coulomb

interaction the integration over the q-space is divided into Nq integrations in the

regions BZ ′ (qi). defines these regions so to cover the BZ without overlapping;

a simple procedure can be carried out in the case of a uniform q-grid where the grid

is itself a Bravais Lattice and the BZ ′ (qi) are the Brillouin Zones of this small

lattice. The integrals
∫

BZ′(Γ)

dq

(2π)3fn1(k−q−qi)
1

|q + qi + G||q + qi + G′|

≈ (2π)3

NqΩNr

∑

j=1...Nr

fn1(k−Qj−qi)
1

|Qj + qi + G||Qj + qi + G′| , (A.21)

are calculated generating NPT (Nr) random q-points {Qi} inside the small Brillouin

Zone BZ ′ (Γ) centered around q = 0. Eq. (A.21) is calculated for (NGWSIGX) G–

vectors.

For metallic systems the occupations fn1(k−Qj−qi) are fitted using the Fermi

surface parametrized in the file data.fermisurface generated with the application fer-

misurface.x contained in the package.

A.8 Runlevel 5: exchange–correlation and

bare–exchange matrix elements

Purpose: Matrix elements of bare–exchange and exchange–

correlation potential

Input files used: DATA files of runlevel 1 and 4, self.in

Output files: data.vxcsigmax

Parameters used: NGWSIGX (INTEGER)

NBNMIX (INTEGER)

KSIG1, KSIG2 (INTEGER)

BSIG1, BSIG2 (INTEGER)
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Flags .true. in self.in: PRESIGX

In this section calculates the matrix–elements of bare–exchange and Ceperley–

Alder [3] exchange–correlation potential, parametrized by Perdew and Zunger [4].

for k–points from KSIG1 to KSIG2 and for bands from BSIG1 to BSIG2.

To calculate the bare–exchange the summation over the G–vectors is done using

NGWSIGX plane waves. NBNMIX represents the band–mixing for the off-diagonal

matrix elements. This means that, for example

〈nk|Σx (r1, r2) |n′k〉 6= 0 if |n− n′| ≤ NBNMIX (A.22)

A.9 Runlevel 6: Plasmon–Pole parameters

Purpose: Plasmon–Pole parameters for ε̃−1
G,G′ matrix

Input files used: DATA files of runlevel 1, self.in

Output files: data.plas.pole

Parameters used: NGBLK (INTEGER)

NGDIAG (INTEGER)

ZERO (REAL)

Flags .true. in self.in: PRESIG

GWPP

The plasmon–pole [5] parameters for the screening function are calculated in

this runlevel. For each q vector calculates the ε̃−1
G,G′ (q, ω) matrix (See Sec-

tion 3.2.2, Eq. (3.24)) for two frequencies: 0 + i0 and 0 + i (ZERO). The ε̃−1 matrix

has dimensions NGBLK and NGDIAG as discussed above for the Local Field section.

Note that in this case uses automatically the flag.serial option calculating

a causal dielectric matrix.

A.10 Runlevel 7: the full screening function

Purpose: Full screening function for GW calculations

Input files used: DATA files of runlevel 1 and 4, self.in

Output files: data.W, data.epsm1 (if EPSM1WR=.true.)
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Parameters used: DRUDEL (LOGICAL)

DRUDER (REAL)

DRUDEI (REAL)

NBN (INTEGER)

NBNCHI (INTEGER)

NGBLK (INTEGER)

NGDIAG (INTEGER)

ZERO (REAL)

WMAX (REAL)

NW (INTEGER)

NBNMIX (INTEGER)

KSIG1, KSIG2 (INTEGER)

BSIG1, BSIG2 (INTEGER)

Flags .true. in self.in: PRESIG

EPSM1WR (optional)

In this section calculates the main quantity in the full screening GW , the

screening function Γh/e (nn1n
′,k − q, ω) . The definition used in the code is the

same introduced in Chapter 3, Eq. (3.33–3.35)

〈nk|M (r1, r2, ω) |n′k′〉 = −
∑

n1

∫

BZ

dq

(2π)3

[∫ ∞

−∞

dω′ Γh (nn1n
′,k − q, ω′)

ω − ω′ − εn1(k−q) + iδ

+

∫ ∞

−∞

dω′ Γe (nn1n
′,k − q, ω′)

ω − ω′ − εn1(k−q) − iδ

]

, (A.23)

with

Γh (nn1n
′,k − q, ω′) = 2

∑

G,G′

ρ̃nn1
(k,q,G) [ρ̃n′n1

(k,q,G′)]
∗

2fn1(k−q)

|q + G||q + G′|=
[
ε̃−1
G,G′ (q, ω)

]
θ (ω) , (A.24)

Γe (nn1n
′,k − q, ω′) = 2

∑

G,G′

ρ̃nn1
(k,q,G) [ρ̃n′n1

(k,q,G′)]
∗

2
(
1 − fn1(k−q)

)

|q + G||q + G′|=
[
ε̃−1
G,G′ (q, ω)

]
θ (−ω) . (A.25)

DRUDEL, DRUDER, DRUDEI, NBNCHI,NGBLK, NGDIAG,WMAX,NW and ZERO de-

fines the matrix ε̃−1
G,G′ (q, ω) as already described in the Local Field section. Note

the WMIN is not required because put WMIN = 0 in order to expand the

screening function in the range [−WMAX,WMAX].
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NBN is, generally, higher than NBNCHI and represents the number of bands

contained in the single particle Green’s function G of the GW approximation. The

corresponding index in Eq. (A.23) is n1.

As in the bare–exchange matrix elements KSIG1, KSIG2, BSIG1, BSIG2 and NBN-

MIX parameters decide the dimension of the mass–operator matrix (band index n

and n′ in Eq. (A.23)).

In this runlevel the EPSM1WR flag is particularly useful. Setting EPSM1WR=.true.

writes in the data.epsm1 file the frequency and q components of the ε̃−1
G,G′ (q, ω)

matrix. Calculating other data.W relative to other KSIG1, KSIG2, BSIG1, BSIG2 pa-

rameters if finds the data.epsm1 a large part of the calculation is skipped.

Clearly the data.epsm1 file can be very large, but, on the other hand, it can reduce

sensibly the computational time.

A.11 Runlevel 8: GW quasiparticle energies

Purpose: Full screening/plasmon–pole GW energies

Input files used: DATA files of runlevel 1, data.W corresponding to the

KSIG1, KSIG2, BSIG1, BSIG2 chosen, flag.fullrange (op-

tional), self.in

Output files: out.qp, out.G* and out.sigc* if flag.fullrange is found

Parameters used: SIGPERT (LOGICAL)

NBN (INTEGER)

ZERO (REAL)

WMIN (REAL) (optional)

WMAX (REAL) (optional)

NW (INTEGER) (optional)

NBNMIX (INTEGER) (optional)

KSIG1, KSIG2 (INTEGER) (optional)

BSIG1, BSIG2 (INTEGER) (optional)

Flags .true. in self.in: PRESIG

In this runlevel performs the energy integral of Eq. (A.23). The number

of bands NBN, the parameters NBNMIX,KSIG1, KSIG2 and BSIG1, BSIG2 of the

screening function can also be changed in the range of the values used for the data.W

file.
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SIGPERT controls the method used to solve the Dyson Equation (See Sec-

tion 3.3.3)

[

Gnk

(

εQP
nk

)]−1

= εQP
nk − εnk −

[

Σnk
x +Mnk

(

εQP
nk

)

+M core
nk − V nk

xc

]

= 0 (A.26)

a. If SIGPERT=.true. uses the iterative procedure described in Section 3.3.3

based on the secant method [2].

a. If SIGPERT=.false. us the Newton method at the first iteration, intro-

ducing the mass–operator derivative.

If finds the flag.fullrange file the Self–energy and GW Greens’ functions

energy dependence for the k–points and bands selected are reported in the files

out.G* and out.sigc*. The extension of these files indicates the k–point/band

out.G.kpt1.ib.1.ibp.1 out.G.kpt18.ib.3.ibp.3

out.G.kpt1.ib.10.ibp.10 out.G.kpt18.ib.4.ibp.4

out.G.kpt1.ib.2.ibp.2 out.G.kpt18.ib.5.ibp.5

out.G.kpt1.ib.3.ibp.3 out.G.kpt18.ib.6.ibp.6

out.G.kpt1.ib.4.ibp.4 out.G.kpt18.ib.7.ibp.7

and

out.sigc.kpt1.ib.5.ibp.5 out.sigc.kpt19.ib.1.ibp.1

out.sigc.kpt1.ib.6.ibp.6 out.sigc.kpt19.ib.10.ibp.10

out.sigc.kpt1.ib.7.ibp.7 out.sigc.kpt19.ib.2.ibp.2

out.sigc.kpt1.ib.8.ibp.8 out.sigc.kpt19.ib.3.ibp.3

In this case asks also for the energy range of these files, [WMIN,WMAX]

and for the number of steps NW.

A.12 Runlevel 9: GW quasiparticle lifetimes

Purpose: Full screening calculation of the GW quasiparticle life-

times

Input files used: DATA files of runlevel 1, self.qp (optional), data.epsm1

(if found), self.in

Output files: report.lifestates, out.lifetimes

data.epsm1 (if EPSM1WR=.true.)
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Parameters used: DRUDEL (LOGICAL)

DRUDER (REAL)

DRUDEI (REAL)

NBNCHI (INTEGER)

NGBLK (INTEGER)

NGDIAG (INTEGER)

WMAX (REAL) (if EPSM1WR=.true.)

NW (INTEGER) (if EPSM1WR=.true.)

ZERO (REAL)

KSIG1, KSIG2 (INTEGER)

BSIG1, BSIG2 (INTEGER)

Flags .true. in self.in: LLIFE

EPSM1WR (optional)

In this section the GW quasiparticle lifetimes are calculated. As in the sections

above DRUDEL ,DRUDER ,DRUDEI ,NBNCHI ,NGBLK ,NGDIAG and ZERO defines

the matrix ε̃−1
G,G′ (q, ω). For the details of the theory see Chapter 4. KSIG1, KSIG2

and BSIG1, BSIG2 define the quantum numbers of the quasiparticle. From the

particular case of the hole lifetimes Eq. (4.10) says that, at the non self–consistent

GW level

Γhole
nk ∝

∑

n′

∑

q

Im
[

Wnk→n′(k−q)

(

εDFT−LDA
n′(k−q) − εQP,0

nk

)]

θ
(

εDFT−LDA
n′(k−q) − εQP,0

nk

)

fn′(k−q) (A.27)

The files data.epsm1 and self.qp are needed by to solve two problems related

to Eq. (A.27)

1. If we are interested in a large number of states, the number of energies εDFT−LDA
n′(k−q) −

εQP,0
nk where the inverse dielectric matrix has to be calculated can be very large,

increasing the memory needed and the time of the calculation. At the very

first run of the lifetime calculation reports at the end of the file re-

port.lifestates the maximum energy transition εDFT−LDA
n′(k−q) − εQP,0

nk . Using this

value a first calculation of the ε̃−1 matrix can be done specifying the param-

eters WMAX and NW and setting EPSM1WR=.true.. In this case at all the

next runs will use an interpolation method to calculate Eq. (A.27) with

an important decrease of the computing time.

2. To perform GW0 calculations like those described in Chapter 4 used th
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external file self.qp (a slightly modified out.qp file obtained as output of runlevel

8) to overwrite the energies read from self.gen. Also the renormalization factors

are read.
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