

Cheatsheet

For GPL v4.1.2

Input file generation and command line interface (yambo -H)

-J <opt></opt>	:Job string identifier		-i	:Initialization
-V <opt></opt>	:Input file verbosity		-o <opt></opt>	:Optics [opt=(c)hi is (G)-space
	[opt=RL,kpt,sc,qp,io,gen,r	resp,all,par]		(b)se is (eh)-space]
-F <opt></opt>	:Input file		-k <opt></opt>	:Kernel [opt=hartree/alda/lrc/hf/sex]
-I <opt></opt>	:Core I/O directory			hf/sex only eh-space;
-O <opt></opt>	:Additional I/O directory			Irc only G-space
-C <opt></opt>	:Communications I/O direct	ctory	-y <opt></opt>	:BSE solver [opt=h/d/(p/f)i]
-D	:DataBases properties			(h)aydock/
-W <opt></opt>	:Wall Time limitation (1d2h	n30m format)		(d)iagonalization (i)nversion
-Q	:Don't launch the text editor		-r	:Coulomb potential
-M	:Switch-off MPI support (serial run)		-X	:Hartree-Fock Self-energy and local XC
-N	:Switch-off OpenMP suppo	ort (one thread)	-d	:Dynamical Inverse Dielectric Matrix
			-b	:Static Inverse Dielectric Matrix
			-p <opt></opt>	:GW approximations
Combination of options				[opt=(p)PA/(c)HOSEX]
Examples: input file generation/runlevel selection:			-g <opt></opt>	:Dyson Equation solver
\$ yambo -o c -k hartree -V RL Optics, LFE				[opt=(n)ewton/(s)ecant/(g)reen]
\$ yambo -x -g n -p p -V qp GW with PPA			-l	:GoWo Quasiparticle lifetimes
\$ yambo	-o b -k sex -y h -b	Optics, BSE	-a	:ACFDT Total Energy

Dipole/momentum matrix elements $(q\rightarrow 0)$

$$\langle n\mathbf{k}|\mathbf{p}+i[V^{\mathrm{NL}},\mathbf{r}]|m\mathbf{k}\rangle$$

Screening matrix elements (FFT) $\rho_{nm}(\pmb{k},\pmb{q},\pmb{G}) = \langle n\pmb{k} \,|\, e^{i(\pmb{q}+\pmb{G})\cdot\pmb{r}} |\, m\pmb{k}-\pmb{q}\rangle$

where the wavefunction is expanded over reciprocal lattice (G) vectors: $\phi_{n\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{V}} \sum_{\mathbf{G}} e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} c_{n\mathbf{k}}(\mathbf{G})$

FFTGvecs = 1 RL

Number of G-vectors (or energy cutoff) for expanding wavefunctions in transition matrix elements and FFT operations Units: number of G-vectors (RL), or energy unit (Ry, mHa, eV) Determines size (memory) of calculation. Corresponds to cutoff in DFT calculation; can be much less than geometry cutoff

Non-local commutator term

Can greatly increase CPU time. Remove by hiding the SAVE/ns.kb pp pwscf file.

v4.1.2

$$\epsilon_{\alpha,\alpha}(\omega) = 1 + \frac{16\pi}{\Omega} \sum_{c,v}$$

```
\sum_{\mathbf{c_k}} \frac{1}{E_{c\mathbf{k}} - E_{v\mathbf{k}}} \frac{|\langle v\mathbf{k} | \mathbf{p}_{\alpha}^{\mathsf{See} \, (1)} | V^{\mathsf{NL}}, \mathbf{r}_{\alpha}] | c\mathbf{k} \rangle|}{(E_{c\mathbf{k}} - E_{v\mathbf{k}})^2 - (\omega + [i\gamma)^2)}
```

% LongDrXd
 1.000 | 0.000 | 0.000 |
%

E-field direction (for q=0)

Vector (cartesian coordinate)

Refers to first q-point (QpntsRXd)

DFT k-grid % EnRngeXd 0.000 | 10.000 | eV

ETStpsXd = 100

Energy grid in output

Range from 0 to 10 in 100 steps

```
% BndsRnXd
```

1 | 100 |

Bands used (empty & filled)

Range from 1 to nbnd

Reduce range to lower memory. In metals, includes partially filled bands. See also **EhEngyXd** (-V all)

% DmRngeXd 0.1000 | 0.100 | eV %

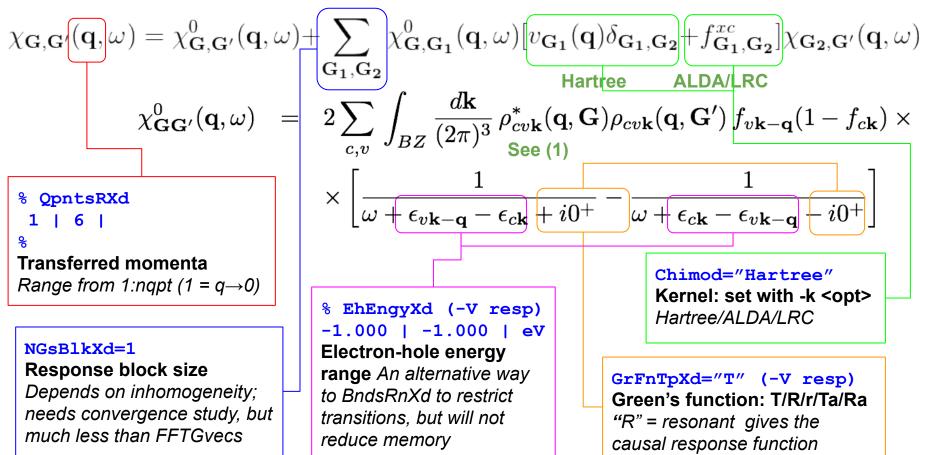
Broadening of spectra

Either a fixed value, or linearly changing between 2 values

(3) Linear response with local fields (RPA-LFE): yambo -o c -k hartree

$$\chi_{\mathbf{G},\mathbf{G'}}(\mathbf{q},\omega) = \chi_{\mathbf{G},\mathbf{G'}}^{0}(\mathbf{q},\omega)$$

$$\chi_{\mathbf{G}\mathbf{G'}}^{0}(\mathbf{q},\omega) =$$


% QpntsRXd 1 | 6 |

Transferred momenta Range from 1:nqpt (1 = $q\rightarrow 0$)

NGsBlkXd=1

Response block size

Depends on inhomogeneity: needs convergence study, but much less than FFTGvecs

(4) Linear response within TDDFT: yambo -o c -k ALDA/LRC

$$\chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) = \chi_{\mathbf{G},\mathbf{G}'}^0(\mathbf{q},\omega)$$

$$\chi^0_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$$

NGsBlkXd=1

Response block size Depends on inhomogeneity; needs convergence study, but much less than FFTGvecs

FxcGRLc=1 XC-kernel size

Needs convergence study. Much less than FFTGvecs

$$\chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega) = \chi_{\mathbf{G},\mathbf{G}'}^{0}(\mathbf{q},\omega) + \sum_{\mathbf{G}_{1},\mathbf{G}_{2}} \chi_{\mathbf{G},\mathbf{G}_{1}}^{0}(\mathbf{q},\omega) \underbrace{\begin{bmatrix} v_{\mathbf{G}_{1}}(\mathbf{q})\delta_{\mathbf{G}_{1},\mathbf{G}_{2}} \\ v_{\mathbf{G}_{1}}(\mathbf{q})\delta_{\mathbf{G}_{1},\mathbf{G}_{2}} \end{bmatrix}}_{\mathbf{Hartree}} \underbrace{\chi_{\mathbf{G}_{2},\mathbf{G}'}^{c}(\mathbf{q},\omega)}_{\mathbf{Hartree}} + \underbrace{\chi_{\mathbf{G}_{1},\mathbf{G}_{2}}^{c}}_{\mathbf{G}_{2},\mathbf{G}'}(\mathbf{q},\omega) \\ = 2\sum_{c,v} \int_{BZ} \frac{d\mathbf{k}}{(2\pi)^{3}} \frac{\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G}')}{\sum_{\mathbf{See}\;(\mathbf{1})}} \underbrace{\chi_{\mathbf{G}_{2},\mathbf{G}'}^{c}(\mathbf{q},\omega)}_{\mathbf{F}_{v\mathbf{k}-\mathbf{q}}} \times \underbrace{\begin{bmatrix} 1 \\ \omega + \epsilon_{v\mathbf{k}-\mathbf{q}} - \epsilon_{c\mathbf{k}} + i0^{+} \end{bmatrix}}_{\mathbf{M}_{2}^{*}} \underbrace{\chi_{\mathbf{G}_{2},\mathbf{G}'}^{c}(\mathbf{q},\omega)}_{\mathbf{G}_{2}^{*}} + \underbrace{\chi_{\mathbf{G}_{2},\mathbf{G}'}^{c}(\mathbf{q},\omega)}_{\mathbf{G}^{*}} + \underbrace{\chi_{\mathbf{G}_{2},\mathbf{G}'}^{c}(\mathbf{q},\omega)}_{\mathbf{G}_{2}^{*}} + \underbrace{\chi_{\mathbf{G}_{2},\mathbf{G}'}^{c}(\mathbf{$$

LRC alpha=1

LRC fitting parameter Long-range tail of the f kernel. Depends on the system: the larger the screening the smaller this parameter.

Chimod="ALDA"

Kernel: set with -k <opt>

<opt>=ALDA

<opt>=LRC: semi-empirical kernel with proper long-range behaviour. It needs a fitting parameter!

(5) Screening (RPA): yambo -d

See sheet (3): this runlevel computes the inverse dielectric matrix from X(G,G')

$$\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G},\mathbf{G}'} + v_{\mathbf{G}}(\mathbf{q})\chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega)$$

Connection with experiment:

$$\epsilon_M(\omega) = \lim_{\mathbf{q} \to 0} \frac{1}{\epsilon_{\mathbf{G}=\mathbf{0},\mathbf{G}'=\mathbf{0}}^{-1}(\mathbf{q},\omega)}$$

$$Abs(\omega) = Im \, \epsilon_M(\omega) \quad EELS(\omega) = -Im \, \frac{1}{\epsilon_M(\omega)}$$

(6a) Coulomb integrals RIM (Random Integration Method): yambo

$$v(\boldsymbol{q} + \boldsymbol{G}) = \frac{4\pi}{|\boldsymbol{q} + \boldsymbol{G}|^2}$$

$$\int_{Bz} \frac{d^3q}{2\pi^3} f(q,G) v(q+G) \approx \sum_{q_i} f(q_i,G) v(q_i+G) \Omega_{q_i} \quad \text{Discretization of Bz for integrals}$$

A better approximation is given by:

$$\int_{Bz} \frac{d^3q}{2\pi^3} f(q,G)v(q+G) \approx \sum_{q_i} f(q_i,G)I_{q_i}(G)$$

Monte Carlo integral of the Coulomb potential in each region the Bz has been dissected by the g point sampling

$$I_{q_i}(G) = \int_{R_\Gamma} \frac{d^3q'}{(2\pi)^3} v(q+q'+G) \quad \begin{array}{l} \text{Random Integration Method} \\ \text{RandQpts=1000000} \\ \text{Number of q points to perform} \end{array}$$

Tip: 1. Needed for non 3D system to avoid divergences for small q

2. Needed to build cutoff potential with box shape

Number of q points to perform Monte Carlo Integration,

RandGvec= 1 RI

Number of G vectors the RIM is calculated

Tip: RandGvec=1 (gamma) is usually enough. 1 Million g points is usually accurate.

$$v(\boldsymbol{q} + \boldsymbol{G}) = \frac{4\pi}{|\boldsymbol{q} + \boldsymbol{G}|^2}$$

Truncation of the Coulomb potential for non 3D system to speed up convergence with respect the vacuum

$$V_c(\mathbf{r}) = egin{cases} rac{1}{|\mathbf{r}|}, & ext{if } \mathbf{r} \in S \ 0, & ext{otherwise.} \end{cases}$$

- Sphere XYZ: assign: CUTRadius= 10.0 a.u
- Cylinder Z: assign CUTRadius and CUTCylLen (CUTCylLen=0 indicates infinite cylinder)
- Box Z: assign CUTBox

% CUTBox

0.00 | 0.00 | 32.00 | # [CUT] [au]

Box sides

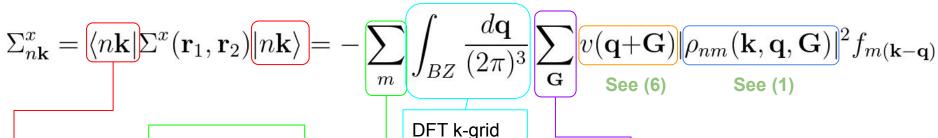
%

Box side=0 means do not cut in that direction

S: interactting region:

CUTGeo= "box Z" X/Y/Z or XY/XZ/YZ or XYZ

- Possible region:
- sphere (0D for molecules),
- cylinder (1D for polymers, tubes, etc),
- box (0D, 1D, 2D).


XYZ: cut in all directions

Box: XY: cut in XY only, etc...

Cylinder X/Y/Z indicates cylinder axis

Tip: When using Box shapes, the RIM is also needed to calculate the potential. In Box for large enough boxes assigns Box side slighlty smaller than the cell box

(7) Exchange self energy:

occupied bands only

EXXRLvcs= 2487001 RL

G-vectors in the exchange

 ${q} = {k-k'}$

Number of RL vectors, or energy in Ry / mHa / etc Tip: set to less than FFTGvecs

```
%QPkrange

1| 5| 20| 59|

4| 8| 60| 80|

%

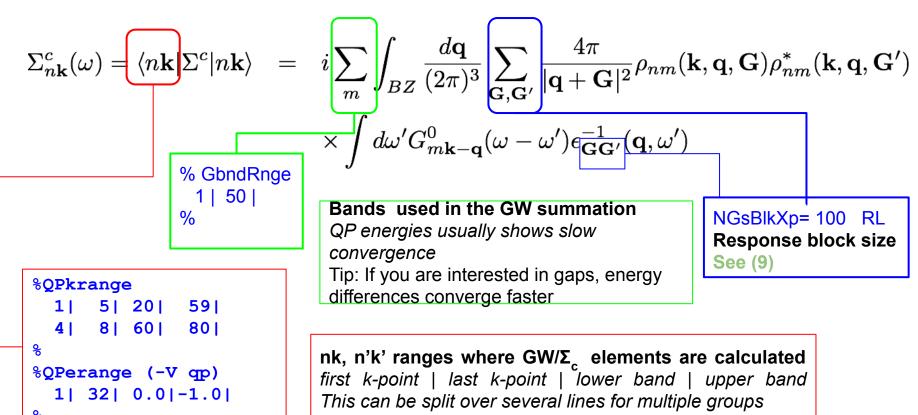
%QPerange (-V qp)

1| 32| 0.0|-1.0|

%
```

nk, n'k' ranges where GW/Σ elements are calculated

first k-point | last k-point | lower band | upper band


This can be split over several lines for multiple groups

Tip: careful use of fewer k-points and bands reduces the calculation time; yambo will interpolate the rest

nk,nk' ranges (alternative method)

first k-point | last k-point | lower energy | upper energy

(8) Correlation part of self energy:

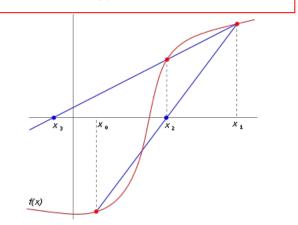
This can be split over several lines for multiple groups

Tip: careful use of fewer k-points and bands reduces the calculation time; yambo will interpolate the rest

(8a) Dyson Solver: yambo -g n/s

$$E_{nk}^{QP} = \epsilon_{nk} + \langle \psi_{nk} | \Sigma(E_{nk}^{QP}) - V_{xc} | \psi_{nk} \rangle$$

DysSolver= "n" First order expansion around KS eigenvalue


$$E_{nk}^{QP} = \epsilon_{nk} + Z_{nk} \langle \psi_{nk} | \Sigma(\epsilon_{nk}) - V_{xc} | \psi_{nk} \rangle$$

$$Z_{nk} = \left[1 - \frac{d\Sigma_{nk}(\omega)}{d\omega}\Big|_{\omega = \epsilon_{nk}}\right]^{-1} \qquad \text{dScStep= 0.10000 eV \# [GW] Energy step to evaluate Z}$$

DysSolver= "s" Secant iterative method

https://en.wikipedia.org/wiki/Secant method

$$x_n = x_{n-1} - f(x_{n-1}) rac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})} = rac{x_{n-2} f(x_{n-1}) - x_{n-1} f(x_{n-2})}{f(x_{n-1}) - f(x_{n-2})}$$

(9) Plasmon Pole approximation (PPA):

yambo -p p

Components of the Dielectric matrix approximated has a single pole functions:

$$\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega) \sim \delta_{\mathbf{G},\mathbf{G}'} + \mathbf{R}_{\mathbf{G},\mathbf{G}'}(\mathbf{q})[(\omega - \Omega_{\mathbf{G},\mathbf{G}'}(\mathbf{q}) + i0^{+})^{-1} - (\omega + \Omega_{\mathbf{G},\mathbf{G}'}(\mathbf{q}) - i0^{+})^{-1}]$$

Residuals $R_{\mathbf{G},\mathbf{G}'}(\mathbf{q})$ and energies $\Omega_{\mathbf{G},\mathbf{G}'}(\mathbf{q})$ are found by imposing the PPA to reproduce the exact ϵ^{-1} function at ω = 0 and ω = iE_{PPA} with E_{PPA} being a suitable user-defined parameter.

$$R_{\mathbf{G},\mathbf{G}'}(\mathbf{q}) = \frac{ \frac{\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega=\mathbf{0})\Omega_{\mathbf{G},\mathbf{G}'}}{\mathbf{2}}$$

$$\Omega_{\mathbf{G},\mathbf{G}'} = E_{PPA} \sqrt{\frac{\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega = \mathbf{E}_{\mathbf{PPA}})}{\epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega = \mathbf{0}) - \epsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega = \mathbf{E}_{\mathbf{PPA}})}}$$

The QP energies should not depend too much on the choice of imaginary plasmon frequency. **Tip:** Choose a value higher in energy than the plasmon peak (EELS spectrum)

% BndsRnXp
1 | 100 |

Range from 1 to nbnd
Reduce range to lower memory.

NGsBlkXp= 100 RL Response block size

PPAPntXp= 27.21138 eV
PPA imaginary energy

(10a) Construction of the BSE Hamiltonian: yambo -o b -k sex -b

BSE is rewritten as an eigenvalue problem for the 2 particle Hamiltonian: size of matrix $[N_v \times N_c \times K_{BZ}] \times [N_v \times N_c \times K_{BZ}]$

$$H_{\underline{v'c'\mathbf{k'}}}^{\underline{exc}} = [(\epsilon_{c\mathbf{k}} - \epsilon_{v\mathbf{k}}) \delta_{c,c'} \delta_{v,v'} \delta_{\mathbf{k}\mathbf{k'}} + (f_{c\mathbf{k}} - f_{v\mathbf{k}}) [2\bar{V}_{\underline{v'c'\mathbf{k'}}}^{\underline{vc\mathbf{k}}} - W_{\underline{v'c'\mathbf{k'}}}^{\underline{vc\mathbf{k}}}]$$

Difference of quasiparticle energies:

From DFT + QP corrections:

Kernel part: see next slide

KfnQPdb= " E < ./SAVE/ndb.QP"

Location of QP corrections database

From previous GW calculation

OR

% BSEBands
2 | 8 |
Bands Range
lower band | upper band |

% KfnQP_E
1.4000 | 1.200 | 0.900 |
QP corrections parameters
scissor | stretch conduction | stretch valence

(10b) Construction of the BSE kernel:

yambo -o b -k sex -b

Electron-hole exchange part (from Hartree potential - local field effects):

$$K_{vc\mathbf{k},v'c'\mathbf{k}'}^{x} = \bar{V}_{vc\mathbf{k},v'c'\mathbf{k}'} = \frac{1}{\Omega} \sum_{\mathbf{G}\neq\mathbf{0}} v(\mathbf{G}) \langle c\mathbf{k}|e^{i\mathbf{G}\mathbf{r}}|v\mathbf{k}\rangle \langle v'\mathbf{k}'|e^{-i\mathbf{G}'\mathbf{r}}|c'\mathbf{k}'\rangle$$

$$\mathbf{BSENGexx} = \mathbf{30} \ \mathbf{Ry}$$

$$\mathbf{Components} \ \mathbf{of} \ \mathbf{Hartree} \ \mathbf{potential}$$

Electron-hole attraction part (from screened exchange potential - excitonic effects):

$$K_{vc\mathbf{k},v'c'\mathbf{k}'}^{c} = W_{vc\mathbf{k},v'c'\mathbf{k}'} = \frac{1}{\Omega} \sum_{\mathbf{G},\mathbf{G}'} v(\mathbf{q} + \mathbf{G}) \varepsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q}) \langle c\mathbf{k}|e^{i(\mathbf{q}+\mathbf{G})\mathbf{r}}|c'\mathbf{k}'\rangle \langle v'\mathbf{k}'|e^{-i(\mathbf{q}+\mathbf{G}')\mathbf{r}}|v\mathbf{k}\rangle \delta_{\mathbf{q}\mathbf{k}-\mathbf{k}'}$$

$$\begin{array}{c} \text{\%BandsRnXs} \\ 1\,|\,20\,|\\ \text{NGsBlkXs} = 2\,\mathrm{Ry} \\ \text{\% LongDrXS} \\ 1.000\,|\,1.000\,|\,1.000\,| \end{array}$$

(11a) BSE solver (diagonalisation): yambo -y d

The macroscopic dielectric function is obtained as:

$$\epsilon_{M}(\omega) \equiv 1 - \lim_{\mathbf{q} \to 0} \frac{8\pi}{|\mathbf{q}|^2 \Omega} \sum_{vc\mathbf{k}} \sum_{v'c'\mathbf{k}'} \langle v\mathbf{k} - \mathbf{q} | e^{-i\mathbf{q}\mathbf{r}} | c\mathbf{k} \rangle \langle c'\mathbf{k}' | e^{i\mathbf{q}\mathbf{r}} | v'\mathbf{k}' - \mathbf{q} \rangle \sum_{\lambda} \frac{A_{cv\mathbf{k}}^{\lambda} \left(A_{c'v'\mathbf{k}'}^{\lambda}\right)^*}{\omega - E_{\lambda}}$$

$$\begin{array}{c} \text{\% BLongDir} \\ \text{1.000000} \mid \text{1.000000} \mid \text{0.000000} \mid \\ \text{\%} \\ \text{Direction of the longitudinal perturbation} \\ \\ \text{\% BDmRange} \\ \text{0.10000} \mid \text{0.10000} \mid \text{0.10000} \mid \text{eV} \\ \text{\%} \\ \text{Lorentzian broadening changes linearly} \\ \text{broad@min energy} | \text{broad@max energy} \\ \end{array}$$

(11b) BSE solver (Lanczos-Haydock): yambo -y h

The macroscopic dielectric function is obtained as:

The macroscopic dielectric function is obtained as:
$$\epsilon_M\left(\omega\right) \equiv 1 - \lim_{\mathbf{q} \to 0} \frac{8\pi}{|\mathbf{q}|^2 \Omega} \sum_{vc\mathbf{k}} \left| \left\langle v\mathbf{k} - \mathbf{q} | e^{-i\mathbf{q}\mathbf{r}} | c\mathbf{k} \right\rangle \right|^2 \frac{1}{(\omega - a_1) - \frac{b_2^2}{(\omega - a_2) - \frac{b_3^2}{\dots}}}.$$

Where the a's and b's are obtained iteratively from Lanczos algorithm

BSHayTrs= -0.02000

Threshold for accuracy of the iterative process

Negative sign: average difference, over the energy range, of two consecutive approximations to the spectrum

Positive sign: maximum difference, over the energy range, of two consecutive approximations to the spectrum

In addition to input parameters defined in (11a)

(12) Postprocessing - exciton plot: ypp -e w

```
excitons
                     # [R] Excitons
wavefunction
                     # [R] Wavefunction
Format= "x"
                     # Output format [(c)ube/(g)nuplot/(x)crysden]
Direction= "123" # [rlu] [1/2/3] for 1d or [12/13/23] for 2d [123] for 3D
FFTGvecs= 30 Ry # [FFT] Plane-waves
States= "1 - 3" # Index of the BS state(s)
Degen Step= 0.0100 eV # Maximum energy separation of two degenerate states
% Cells
                     # Number of cell repetitions in each direction (odd or 1)
% Hole
0.00 | 3.44
                         # [cc] Hole position in unit cell
                | 0.00 |
```

Excitonic wavefunction does not have the periodicity of the e and h wavefunctions but is generally more extended, with a fictitious periodicity due to the k-points sampling

$$\chi^{0}_{\mathbf{GG'}}(\mathbf{q},\omega) = 2 \sum_{c,v} \int_{BZ} \frac{d\mathbf{k}}{(2\pi)^{3}} \rho^{*}_{cv\mathbf{k}}(\mathbf{q},\mathbf{G}) \rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G}') f_{v\mathbf{k}-\mathbf{q}} (1-f_{c\mathbf{k}}) \times \\ \times \boxed{1 \\ \omega + \epsilon_{v\mathbf{k}-\mathbf{q}} - \epsilon_{c\mathbf{k}} + i0^{+} - \frac{1}{\omega + \epsilon_{c\mathbf{k}} - \epsilon_{v\mathbf{k}-\mathbf{q}} - i0^{+}}}$$
 Q momenta (MPI q)
$$\text{Xo bands} \text{ (MPI c,v)}$$

$$\chi(\mathbf{q},\omega) = \left[I - \chi^0(\mathbf{q},\omega)v\right]^{-1} \chi^0(\mathbf{q},\omega)$$

X_all_q_ROLEs= "q k c v" # [PARALLEL] CPUs roles (q,k,c,v)
X_all_q_CPU= "1 2 4 2" # [PARALLEL] CPUs for each role
X_Threads= 4 # [OPENMP/GW] Number of threads
for response functions
X_all_q_LinAlg_INV = 32 # [PARALLEL] CPUs for matrix inv

num MPI tasks = 1 * 2 * 4 * 2 num threads/MPI-tasks = 4 Total num threads = 4 * (1 * 2 * 4 * 2) MPI-c,v best memory distribution MPI-k efficient, some mem repl MPI-q may lead to load unbalance OpenMP efficient, need extra mem

(13b) Parallelism: Correlation part of self energy

$$\Sigma_{n\mathbf{k}}^{c}(\omega) = \langle n\mathbf{k} | \Sigma^{c} | n\mathbf{k} \rangle = i \sum_{m} \int_{BZ} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G},\mathbf{G}'} \frac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}} \rho_{nm}(\mathbf{k},\mathbf{q},\mathbf{G}) \rho_{nm}^{*}(\mathbf{k},\mathbf{q},\mathbf{G}') \\ \times \int d\omega' G_{m\mathbf{k}-\mathbf{q}}^{0}(\omega-\omega') \epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega') \\ \text{QP states} \\ \text{(MPI qp)} \qquad \qquad \text{Q transferred momenta} \\ \text{(MPI q)} \qquad \qquad \text{Space DoF} \\ \text{(OMP SE_Threads)}$$

```
SE_ROLEs= "q qp b" # [PARALLEL] CPUs roles (q,qp,b)

SE_CPU= "1 2 8" # [PARALLEL] CPUs for each role

SE_Threads= 4 # [OPENMP/GW] Number of threads

# for self-energy
```

num MPI tasks = 1 x 2 x 8
num threads/MPI-tasks = 4
Total num threads = 4 x (1 x 2 x 8)
MPI-b best memory distribution
MPI-qp no communication
MPI-q leads to load unbalance
OpenMP very efficient

(14) IO: yambo -V io

are needed. Memory heavy.

StdoHash= 40 # [IO] Live-timing Hashes # [IO] Space-separated list of DB with NO I/O. DBsIOoff= "none" DB=(DIP,X,HF,COLLs,J,GF,CARRIERs,W,SC,BS,ALL) DBsFRAGpm= "none" # [IO] Space-separated list of +DB to be FRAG and -DB NOT to be FRAG. DB=(DIP,X,W,HF,COLLS,K,BS,QINDX, #WFbufflO # [IO] Wave-functions buffered I/O Parts of the WFs are stored by the node. Nodes communicate when these elements

No ndb.* file is written. Example: DBsIOoff= "DIP" - ndb.dip_iR_and_P_fragment_* is not written, but stored in memory if Yambo needs it.

Fragments the database. Smaller files (e.g. ndb.em1s_fragment_*) are created instead of a large one (e.g. ndb.em1s).

Faster read/write operations in parallel runs

(15) Yambo-python

code structure

yambopy - python module

io

Yamboln: read, write and manipulate

yambo input files

YamboOut: read yambo output files and

save in .json

analyse

analyse: read .json files generated with yamboout and plot them together **recipes:** user contributed scripts

bse

read and manipulate yambo databases

dbs

YamboSaveDB: read ns.db1

YamboLatticeDB: read lattice parameters, symmetries and k-points from ns.db1

YamboElectronsDB: electronic states from

ns.db1

YamboDipolesDB: dipole matrix elements

from ndb.dip*

YamboStaticScreeningDB: static dielectric

screening from ndb.em1s*

YamboQPDB: read the quasiparticle

energies db ndb.QP

YamboGreenDB: read the Green's functions calculated using yambo

(...):

yamboparser

parsing of files, databases, etc

yambopy

analysebse, plotem1s, analysegw, mergeqp, test, plotexciton

qepy

Pwln, Phln, Dynmatln, ProjwfcIn read, write and manipulate Quantum espresso input files (pw.x, ph.x, dynmat.x, projwfc.x respectively)

PwXML, ProjwfcXMI

read output files (datafile.xml, datafile-schema.xml, projwfc.xml)

schedulerpy

scheduler

submit and run codes with the same interface for: bash, pbs, oar

(15) Yambo-python

quick-reference

qepy

```
from gepy import *
#create input file from scratch
qe = PwIn()
#input structure
qe.atoms = [['Si',[0.125,0.125,0.125]],
           ['Si',[-.125,-.125,-.125]]]
qe.atypes = {'Si': [28.086, "Si.pbe-mt_fhi.UPF"]}
#control variables
qe.control['prefix'] = "'si'" #strings need
double "''"
ge.control['wf collect'] = '.true.' #logicals
#system
ge.system['celldm(1)'] = 10.3
ge.system['ecutwfc'] = 30
qe.system['occupations'] = "'fixed'"
qe.system['nat'] = 2
qe.system['ntyp'] = 1
qe.system['ibrav'] = 2
#electrons
qe.electrons['conv_thr'] = 1e-8
#write file
ge.write('si.scf')
```

yambopy

```
from yambopy import *
#create input file in 'bse' folder with SAVE
y = YamboIn('yambo -b -o b -k sex -y d -V
all',folder='bse')
# define variables
v['FFTGvecs'] = [30, 'Ry'] # scalar + units
v['BndsRnXs'] = [1,30] # array with integers
y['BSEBands'] = [3,6] # array with integers
y['BEnRange'] = [[0,8],'eV'] # array + units
y['BEnSteps'] = 500 # numbers
y['KfnQPdb'] = 'E < yambo/ndb.QP' #strings</pre>
#write the file
y.write('bse/yambo run.in')
#create ypp input file
y = YamboIn('ypp -e -a -V all',filename='ypp.in')
#read Local file
y = YamboIn(filename='bse/yambo run.in')
#analyse data in the bse folder
ya = YamboAnalyser('bse')
print(ya)
# plot eel and eps from BSE
va.plot bse('eel')
ya.plot_bse('eps')
```

schedulerpy

```
from schedulerpy import *

# scheduler 1 node and 4 cores
shell = Scheduler.factory(nodes=1,cores=4)

# scheduler of pbs type
shell = Scheduler.factory(scheduler='pbs')

#add commands to the shell
shell.add_command("echo 'hello world'")

#view commands on the screen
print( shell )

#write to a file
shell.write("commands.sh")

#submit or run the job
shell.run()
```

yambopy (bash)

```
$ yambopy #lists all possible commands
$ yambopy plotem1s #help about this command
```